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Abstract

Advancements in Information and Communication Technology (ICT) and big data have significantly
transformed sports analytics, enabling the collection of complex, multidimensional datasets. However, sports
data often exhibit non-normal distributions, skewness, and outliers, which pose challenges for linear models
used in association analysis. In this study, the effectiveness of the Box-Cox transformation in addressing
these issues was evaluated using datasets from ICT-based sports data, specifically datasets from Major League
Baseball (MLB) and the Ladies Professional Golf Association (LPGA). Dependent variable distributions,
regression model performance, and residual patterns were compared before and after the transformation. The
Box-Cox transformation effectively reduced skewness and improved normality, ensuring that fundamental
regression assumptions such as homoscedasticity and linearity were satisfied. Improved model fit was observed
across the datasets, as evidenced by higher R? values, lower Akaike Information Criterion (AIC) scores, and
more evenly distributed residuals. These findings demonstrate that the Box-Cox transformation enhances the
reliability and interpretability of regression models in sports analytics, particularly for non-normal data, by

addressing both distributional characteristics and residual behaviors.
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Introduction

Advances in computing technology, such as
improvements in CPU and GPU performance, have
enabled the efficient computation of neural networks,
while innovations in Information and Communication
Technology (ICT), including wearable devices and
real-time tracking systems, have transformed data
collection and analysis (Ardagna et al., 2016; Huang
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et al., 2017). These developments have driven sports
analytics from simple, frequency-based metrics to
detailed analyses incorporating multidimensional data.
For instance, in baseball, player performance evaluation
now integrates advanced metrics like pitch velocity,
spin rate, and movement, collected in real time.
Similarly, in soccer, analytics has expanded beyond
basic indicators like pass success rates to include
metrics such as sprint speeds, heart rate variability, and
positional movements. In professional golf now utilizes
advanced ball-tracking systems to analyze every shot’s
trajectory and its impact on performance and financial
outcomes. The growing complexity and volume of
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sports data has facilitated applications in diverse
domains, including player performance evaluation,
game strategy optimization, and injury risk assessment
(Bai & Bai, 2021).

Sports analytics using ICT based big data can be
broadly categorized into two primary approaches. The
first focuses on developing predictive models, primarily
driven by deep learning, which excel in predictive
accuracy. These models have been applied to various
analyses, such as predicting player performance,
assessing injury risks, and forecasting game outcomes
(Kumar et al., 2024). By learning complex patterns in
data, deep Ilearning enables precise predictions.
However, its black-box nature often limits its ability
to clearly explain relationships between variables,
posing significant challenges to interpretability
(Castelvecchi, 2016). While predictive accuracy is
important, sports analytics must also provide insight
into the underlying processes influencing outcomes
(Amendolara et al., 2023). Without understanding how
independent variables interact and affect results, the
external validity of deep learning models may remain
limited.

Given the interpretability limitations of deep learning,
researchers frequently employ regression analysis to
explore interactions and relationships between variables.
Regression analysis assumes a linear relationship
between dependent and independent variables, with the
slope representing the strength of this relationship. This
approach is a robust tool for quantifying the
contributions of independent variables to dependent
outcomes. However, its reliability depends on satisfying
key assumptions such as normality, homoscedasticity,
and linearity. Failure to satisfy these assumptions can
result in biased coefficient estimates and unreliable
interpretations (Osborne & Waters, 2002).

Modem sports data, such as scoring metrics, speed,
distance, and playing time, frequently exhibit non-
normal distributions. This tendency is further influenced
by the increasing complexity of contemporary datasets,
which are multidimensional and incorporate player
movements, game contexts, and environmental factors.
Unlike earlier sports data that often featured relatively
simple, frequency-based structures, modern datasets

capture the intricate dynamics of real-time interactions
and external influences, inherently resulting in more
complex distributions. These datasets are increasingly
enriched through ICT-based technologies such as GPS
tracking, wearable devices, and sensor networks, which
enable the real-time collection of highly detailed
metrics. However, these detailed metrics often exhibit
skewed distributions, extreme values (outliers), or
non-linear relationships between variables, posing
challenges for conventional regression models to
accurately capture underlying patterns.

Conducting regression analysis with non-normally
distributed data can lead to biased coefficient estimates
and challenges in interpretation. When normality
assumptions are violated, the residuals of the model
may not meet the required conditions, further
compromising the validity of the analysis. Similarly,
the lack of homoscedasticity —where residual variance
is unequal across levels of an independent variable—
makes reliable inference difficult. To address these
challenges, researchers have increasingly turned to the
Box-Cox transformation, a statistical technique
designed to approximate normality in data distributions
(Osborne, 2010; Zhang & Yang, 2017; Atkinson et al.,
2021). By modifying data using an optimized exponent
(A), the Box-Cox transformation effectively reduces
skewness and kurtosis in non-normal datasets. The
optimal A is determined by maximizing the log-
likelihood function (Box & Cox, 1964; Zhou & Zou,
2024). Applying this transformation to dependent
variables enables regression models to better adapt to
the data’s underlying distribution, making it easier to
satisfy normality assumptions and improving the
reliability and interpretability of results.

For example, positively skewed variables such as
sprint speeds collected from wearable GPS devices or
the frequency of high-intensity runs during a soccer
match can be transformed to approximate normality,
ensuring that residuals exhibit the required distributional
properties for valid coefficient estimation. Additionally,
when non-linear relationships exist—such as between
a basketball player's cumulative workload (e.g., total
accelerations and decelerations during a game) and
injury risk metrics derived from wearable sensors—the
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transformation can help clarify these relationships by
normalizing the dependent variable. Furthermore, by
reducing variability in complex, multidimensional
datasets, the transformation increases the likelihood of
meeting the assumption of homoscedasticity, thereby
simplifying the interpretation of results in advanced
sports analytics.

While foundational work by Nevill and Atkinson
(1997) and Cooper et al. (2007) established critical
frameworks for addressing non-linearity and
measurement reliability in sports science, a systematic
validation of these techniques remains limited in the
context of contemporary ICT-based multidimensional
big data. This study addresses this gap by providing
a systematic comparison between Box-Cox and log
transformations, utilizing high-fidelity performance
data from MLB and the LPGA. By evaluating these
methods against the complex, high-dimensional metrics
that characterize the modern era, this research offers
a refined analytical framework tailored to the unique
data properties of today’s technology-driven sports.

Theoretical Background

Characteristics of Sports Data and the Need for
the Box-Cox Transformation

Sports data stands apart from other data types due
to its multidimensional, dynamic, and context-sensitive
nature. Unlike static datasets, sports data is generated
in real time during games or player actions, capturing
situational complexities that vary across different
sports. For example, in baseball, a batter’s swing speed
and the ball’s launch angle are influenced by
game-specific factors, while in soccer, sprint speed and
player positioning change dynamically based on the
match’s flow. These characteristics make sports data
uniquely challenging for traditional statistical models
that rely on simplified assumptions about data
distributions (Balague et al., 2013; Morgulev et al.,
2018).

A common issue in sports data is its frequent
deviation from normality, which underscores the
necessity for advanced transformation techniques like

the Box-Cox transformation. Variables such as scoring
metrics, playing time, and physiological measurements
often exhibit positive skewness or extreme values due
to the dynamic and context-specific nature of sports
(Bai & Bai, 2021). For example, batted ball distance
in baseball may feature extreme values resulting from
home runs or short fly balls, while sprint distance in
soccer often displays skewness due to differences in
individual playing styles and situational demands (Rein
& Memmert, 2016). In the context of professional golf,
performance-related financial data such as total prize
money typically exhibits extreme right-skewness due
to the ‘winner-take-all’ nature of tournament prize
structures. Such financial outcomes do not follow a
normal distribution, as a small percentage of top-tier
players earmn a disproportionately large share of the total
earnings -with the top 10% capturing nearly 55% of
the purse- presenting a significant challenge for
standard regression-based analysis (Rinehart, 2009).
These distributional characteristics can violate the
normality assumption of many statistical methods,
leading to biased estimates and reduced model
reliability.

The presence of outliers adds another layer of
complexity. In sports, outliers often result from
exceptional performances or unique game scenarios.
For instance, a baseball pitcher achieving an unusually
high number of strikeouts or a soccer team recording
an extraordinary goal count in a single match are not
merely statistical anomalies but carry meaningful
insights about performance or strategy. Analytical
methods must account for these outliers by preserving
their contextual significance while addressing their
potential to skew broader patterns.

Traditional transformation methods, such as log or
square root transformations, have been commonly
employed to address non-normality but often prove
insufficient for the complexities of sports data. Log
transformation, for instance, is restricted to positive data
and cannot handle variables that include zero or
negative values, such as point differentials (Lee, 2020).
Similarly, square root transformations may reduce
skewness but fail to adequately manage extreme values
or non-linear relationships (Shi et al., 2013). These
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limitations highlight the need for a more flexible and
robust approach tailored to the unique distributional
and contextual characteristics of sports data.

The Box-Cox transformation addresses these
challenges by optimizing the A parameter to adjust data
distributions dynamically. This approach reduces
skewness and kurtosis, aligning the data with the
assumptions of statistical models while largely
preserving key characteristics of the dataset (Marimuthu
et al., 2022). Unlike simpler methods, the Box-Cox
transformation accommodates the contextual nuances,
enabling more accurate modeling of its inherent
variability. This makes it particularly suitable for sports
analytics, where the interpretability of extreme values
and the preservation of data variability are critical. By
bridging the gap between statistical rigor and contextual
relevance, the Box-Cox transformation offers a
methodological framework that enhances the reliability
of analytical results across diverse applications, from
performance evaluation to strategic decision-making.

Mechanism of the Box-Cox Transformation

The Box-Cox Transformation is a statistical
technique proposed by Box and Cox in 1964 to
normalize data distributions (Box & Cox, 1964). This
method is used to transform non-normal data into forms
suitable for statistical models such as linear regression,
thereby improving the reliability and predictive
accuracy of these models. Specifically, the Box-Cox
Transformation reduces skewness and Kkurtosis,
ensuring that the fundamental assumptions of statistical
models—such as normality and homoscedasticity —are
met (Draper & Smith, 1998).

The transformation operates on a parameter A, which
non-linearly adjusts the data. The transformation is
defined as follows:

yiM-1

, ifA£0
log(y;), ifA =0

yi® =
Equation (1)

In Equation (1), Y:i represents the observed value

of the original data, and ¥i denotes the transformed

data. The parameter A is a transformation coefficient
optimized to normalize the data distribution. The goal
of the Box-Cox Transformation is to adjust the data
distribution to approximate normality, ensuring that the
residuals of statistical models exhibit normality.

Unlike the log transformation (A=0), which applies
a fixed and uniform adjustment to the data, the Box-Cox
transformation uses Maximum Likelihood Estimation
(MLE) to determine the optimal A value. MLE provides
a statistically rigorous framework to estimate the
parameter that maximizes the likelihood of the observed
data given the model (Marimuthu et al., 2022). This
approach minimizes skewness and kurtosis while
aligning the transformed data closely with a normal
distribution. This is essential for statistical modeling,
as it ensures that key assumptions—such as normality
and homoscedasticity—are satisfied, thereby enhancing
the validity and interpretability of inferential results.
The optimization of A is based on the maximization
of the log-likelihood function, expressed as:

(M)
¢ = ~210g (F2CZTIN 4 - 1y B2 log ()
Equation (2)

In Equation (2), »n is the number of observations,
y® is the mean of the transformed data. The optimal
A value maximizes ¢ (1), minimizing skewness and
kurtosis while ensuring normality. The result of the
transformation is that y;™ approximates a normal
distribution, making the data suitable for statistical
modeling. This adaptive feature of the Box-Cox
Transformation  distinguishes it from  static
transformations like the log transformation, which may
not adequately address varying degrees of skewness
or kurtosis across datasets.

This flexibility is particularly important in sports
analytics, where datasets often exhibit non-normality
and extreme values. The adaptive nature of the Box-Cox
Transformation enables it to preserve critical data
characteristics, such as the relative influence of outliers,
while ensuring that the data conforms to the
assumptions of regression models. This makes the
transformation a robust tool for improving the reliability
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and predictive accuracy of statistical analyses in
contexts where the nuances of data variability are
crucial.

Methods
Dataset

This study aimed to explore the effectiveness of the
Box-Cox transformation in addressing non-normality
in sports data analysis. Representative datasets from
two distinct types of sports —baseball and golf—were
analyzed. Each sports was chosen to reflect different
competition structures: baseball as a representative
turn-based sport and golf as a representative individual
sports (sports where individual skills and strategies
primarily determine the outcome).

Both baseball and golf serve as emblematic
examples of modern sports ICT applications, as they
generate extensive big data through real-time ball-
tracking technologies. These technological advancements
have revolutionized sports analytics, enabling precise
and detailed
performance.  Such

measurement analysis of player
highlight  the

transformative potential of ICT in shaping data-driven

innovations

approaches to sports science and analytics. Detailed
descriptions of each dataset are provided below.

Major League Baseball (MLB) Dataset

The Baseball Savant platform, a hallmark of sports
ICT, provides a wealth of advanced data, including
pitch spin rates, batted ball distances, exit velocities,
and launch angles, showcasing the cutting-edge
capabilities of big data in sports. Leveraging data from
Baseball Savant, this study analyzed the cumulative
batted ball performance of hitters 133 qualified hitters
who met the minimum threshold of 502 plate
appearances during the 2024 season using Box-Cox
regression. Key variables from the dataset included Fast
Swing Rate, Avg Swing Length, Avg Exit Velocity,
and Avg Launch Angle, which were selected to capture
critical aspects of batting performance.

In this study, 'Fast Swing Rate' was designated as

the dependent variable for the primary analysis. Beyond
its role as a measure of swing speed and consistency
directly relevant to batting performance, its selection
serves an exploratory purpose to investigate the
mechanical consistency and underlying intent of hitters
when executing high-velocity swings. This metric
allows for a retrospective examination of how a hitter’s
deliberate intent to swing fast aligns with technical
elements (e.g., swing length, exit velocity, and launch
angle) and physical factors (e.g., age and physical
fitness), thereby capturing the behavioral consistency
of elite performers. Moreover, the use of ICT-based
precision data ensures the high reliability and
reproducibility of this metric, further supporting its role
within  this

methodological framework. Detailed descriptions of

as a robust dependent variable

each variable are provided below.

Fast Swing Rate: The percentage of a player’s
swings that reach a speed of at least 75 MPH

Avg Swing length: The average of total distance
(in feet) traveled by the bat's barrel in
three-dimensional space (X/Y/Z) from the
start of the bat's motion to the point of impact
with the ball.

Avg Exit Velocity: The average of exit velocity of
the batted ball as tracked by Statcast.

Avg Launch angle: The average of launch angle
of the batted ball as tracked by Statcast.

Ladies Professional Golf Association (LPGA)
Golfers’ Performance Data

The dataset titled “LPGA 2022 Player Performance”
was originally sourced from the official LPGA website.
Provided under the Public Domain license, the dataset
was designed to analyze professional golf player
performance and contains 158 observations across 16
variables. For this study, four key variables were
selected for Box-Cox regression: totPrize, driveDist,
avePutts, and fairPct. Detailed descriptions of these
variables are as follows:

totPrize: Total official prize winnings in dollars.
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driveDist: Average drive distance on par 4 and 5
holes in yards.

fairPct: Percentage of drives that landed on fairways.

avePutts: Average number of putts per round.

Comparison and Analysis Procedures

In this study, datasets from MLB and LPGA were
used to analyze the changes in dependent variables after
applying two transformation methods: the Box-Cox
transformation and the log transformation. The results
of these transformations were compared with the raw
data to assess their effects on data normality and
regression model performance. The detailed steps are
as follows.

As the first step, the descriptive statistics (mean,
standard deviation, skewness, and kurtosis) of the raw
data for each variable were calculated. These metrics
were used to evaluate whether the data tended to follow
a normal distribution. Histograms were then used to
visualize and evaluate the distributional characteristics
of the data. To statistically verify normality, the
Shapiro-Wilk test was conducted. The null hypothesis
(HO) of the Shapiro-Wilk test is that “the data follow
a normal distribution.” If the null hypothesis is rejected,
it can be concluded that the data do not follow a normal
distribution (Shapiro et al., 1968).

In the next step, the Box-Cox transformation and
the log transformation were employed for each
dependent variable. For the Box-Cox transformation,
the optimal A value was estimated using MLE to
minimize skewness and kurtosis while approximating
a normal distribution. In parallel, a log transformation
(corresponding to A=0 in the Box-Cox framework) was
conducted. After each transformation, the distributional
changes in the data were reassessed using histograms
and the Shapiro-Wilk test to evaluate normality. This
process enabled comparisons among the raw data,
Box-Cox-transformed data, and log-transformed data,
offering insights into each method’s effectiveness in
addressing skewness and improving normality.

Finally, regression analyses were performed using
the raw (A = 1), Box-Cox-transformed (A = determined
by MLE), and log-transformed data (A = 0). A Gaussian

error distribution with constant variance was assumed
for these models. To ensure a valid and consistent
comparison of the Akaike Information Criterion (AIC)
across different transformation scales, the Jacobian
determinant was incorporated into the log-likelihood
function used for both A estimation and AIC
calculation. This adjustment accounts for the change
in the geometric scale of the data, thereby enabling
a direct comparison between the untransformed and
transformed models. Additionally, R> and RMSE values
are scale-dependent and not directly comparable across
different transformations, relative RMSE (normalized
by the mean) and qualitative diagnostics of residuals
were utilized as supplementary criteria for model
evaluation. Model fit was evaluated using metrics such
as R%, Akaike Information Criterion (AIC), and Root
Mean Square Error (RMSE), along with an examination
of residual plots. This comparative approach underscored
the relative strengths and limitations of each
transformation method, highlighting the Box-Cox
transformation’s ability to balance improved regression
model assumptions with the preservation of critical
characteristics of sports data.

While regression coefficients in Box-Cox and
log-transformed models are not directly interpretable
in the original units (e.g., percentages or dollars), they
provide essential information regarding the direction
of influence (Positive/Negative), statistical significance.
Furthermore, the magnitude of these coefficients reflects
the sensitivity of the transformed dependent variable
to a one-unit change in each respective predictor. While
direct comparison of magnitudes across variables with
different units requires caution, these values effectively
quantify the specific contribution of each factor within
the modeling framework.

Results

MLB Dataset

Table 1 provides a summary of the MLB dataset,
including means, standard deviations, skewness, kurtosis,
and Shapiro-Wilk test results for the variables used in
the analysis: Fast Swing Rate, Age, Avg Swing Length,
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Table 1. Descriptive statistics and normality tests for MLB dataset

Variables Mean Std. Skewness Kurtosis Shapiro-Wilk p-value
Fast Swing Rate 25.92 19.23 0.79 2.75 0.92 <.001
Age 27.73 3.65 0.46 3.13 0.98 0.02

Avg Swing Length 7.33 0.41 -0.58 3.86 0.97 0.006
Avg Exit Velocity 89.71 2.25 0.26 3.32 0.99 0.62
Avg Launch Angle 13.60 4.04 0.05 2.73 0.99 0.89

Avg Exit Velocity, and Avg Launch Angle. Given that
Fast Swing Rate could potentially be influenced by a
player's age, the variable Age was included in the
regression analysis to control for its effects. The results
then reveal important characteristics of the dataset.
The dependent variable, Fast Swing Rate, exhibits
moderate skewness (.79) and moderate kurtosis (2.75),
indicating a distribution that is moderately asymmetric
with heavier tails. Furthermore, the Shapiro-Wilk test
(W =0.92, p < .001) confirms significant deviation
from normality. Among the independent variables, Age
shows slight skewness (0.46) and moderate kurtosis
(3.13), with its Shapiro-Wilk test (W =98, p =.02)
suggesting a deviation from normality. Similarly, Avg
Swing Length displays slight negative skewness (-.58)
and higher kurtosis (3.86), with the Shapiro-Wilk test
(W =097, p =.006) confirming non-normality. On the
other hand, Avg Exit Velocity and Avg Launch Angle
exhibit near-symmetric distributions, with minimal
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Frequency
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MLE Transformed fast_swing_rate

skewness (.26 and .05, respectively) and Shapiro-Wilk
test results indicating no significant departure from
normality (p > .05).

Figure 1 illustrates the distribution of the dependent
variable, Fast Swing Rate, under three conditions:
Original (untransformed; A=1), Box-Cox transformation
with the MLE-derived optimal A (0.384), and log
transformation (A=0). While Table 1 provides numerical
insights into skewness and kurtosis, these histograms
visually depict the effectiveness of each transformation
in reducing skewness and bringing the distribution
closer to normality.

The log transformation shifts the distribution from
its original positive skewness toward a negatively
skewed form. This highlights the potential drawback
of log transformations in some contexts, as they may
over-correct skewness and create distributions that
deviate from normality in the opposite direction. This
outcome can reduce interpretability, especially for
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Figure 1. Histogram of fast swing rate for the MLB dataset
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Table 2. Comparison of regression models for mib dataset across different transformations

=1 7=0.384 =0
(Original) (Box-Cox transformation) (log transformation)
Estimate Std. Estimate Std. Estimate Std.
(p-value) Error (p-value) Error (p-value) Error
-585.20 -29.83
0 (<.001) 41.68 -85.08 (<.001) 5.73 (<.001) 2.268
0.764 0.104 0.04
Sl (Age) (012) 0.298 (012) 0.04 (0.017) 0.016
10.18 2.12 1.277
p2 (ASL) (<.001) 2.725 (<.001) 0.375 (<.001) 0.148
6.22 0.873 0.294
£3 (AEV) (<.001) 0.481 (<.001) 0.066 (<.001) 0.026
-0.006 -0.014 -0.008
p4 (ALA) (0.982) 0.270 (0.712) 0.037 (0.561) 0.014
R 0.6493 0.6888 0.6598
AIC 1004.644 492.806 253.585
Relative RMSE 0.437 0.269 0.215

Note: dependent variable=Fast Swing Rate; ASL: Avg Swing Length; AEV: Avg Exit Velocity; ALA: Avg
Launch Angle. All regression coefficients are reported on the scale of the transformed dependent variable.
Relative RMSE: The root mean square error (RMSE) scaled by the mean of each dependent variable to allow

comparison across transformations.

datasets where symmetry is critical for analysis.
Especially, in sports analytics, extreme values often
represent critical outliers, such as extraordinary
performance or unique events, which hold significant
insights. By overly compressing these extremes, the
log transformation may limit the interpretability of such
data points.

The Box-Cox transformation, on the other hand,
offers a balanced approach. It reduces skewness
effectively while preserving the relative scale of
extreme values, making it particularly suited for sports
data analysis, where such outliers can carry meaningful
contextual importance.

Although the visualized distributions demonstrate
marked improvements in normality, further evaluation
using regression modeling is essential to assess the
transformations’ impact on satisfying key assumptions,
such as homoscedasticity and linearity, which are
crucial for generating reliable and interpretable models.
Table 2 contains these results, summarizing the key
metrics and transformations used in the regression
analysis.

To further evaluate the effects of these transformations
on regression model performance, Table 2 presents a
detailed comparison of regression models for the MLB
dataset across three transformation methods: Original
(untransformed; A=1), the Box-Cox transformation
using the MLE-based optimal A1=0.384, and the log
transformation (A=0). The results highlight significant
differences in model performance and interpretation
across the transformations.

The R? show moderate improvements in explained
variance after transformation. The Box-Cox
transformation achieved the highest R? value (0.6888),
followed by the log transformation (0.6598) and the
untransformed model (0.6493). This suggests that
transformations help better capture the variability in
the dependent variable, Fast Swing Rate, as explained
by the independent variables.

The AIC scores indicate the log-transformed model
achieves the best model fit, with the lowest AIC value
(253.58), followed by the Box-Cox transformation
(492.81) and the untransformed model (1004.64).
Lower AIC

scores emphasize that the log
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transformation provides the most parsimonious model
among the three approaches.

The regression coefficients () demonstrate substantial
differences across transformations, particularly for
predictors like Age (61), Avg Swing Length (), and
Avg Exit Velocity (). Across all transformation
methods, Avg Swing Length () and Avg Exit Velocity
(6s) consistently exhibit strong statistical significance
(p <.001), indicating their robust influence on Fast
Swing Rate. Notably, the impact of Age (1) becomes
less pronounced in the log- transformed model (p=.017)
compared to the untransformed and Box-Cox-
transformed models (p=.012), suggesting that the choice
of transformation method can affect the perceived
strength of certain predictors. On the other hand, Avg
Launch Angle (/) remains statistically insignificant
across all transformations (p >.5), implying that it has
a negligible direct effect on Fast Swing Rate.

The relative RMSE values underscore improved
predictive accuracy after transformation. The log-
transformed model achieved the lowest RMSE (0.215),
followed by the Box-Cox model (0.269), while the
untransformed model exhibited the highest RMSE
(0.437). These RMSE values align with the visual
patterns observed in Figure 2, which illustrates the
relationship between actual and predicted values of Fast
Swing Rate across three transformation methods:
Original (untransformed), the Box-Cox transformation
(MLE-derived 1), and the log transformation (A = 0).

Actual vs Predicted (Original Scale)

Actual vs Predicted (MLE Transformed Scale)

In the original scale plot (left), the scatterplot
exhibits significant dispersion around the diagonal line,
particularly for extreme values, indicating greater
prediction errors. Furthermore, the uneven spread of
points suggests violations of key regression
assumptions, such as homoscedasticity and linearity.

The Box-Cox

substantially reduces the dispersion while still retaining

transformation plot (center)
meaningful deviation for extreme observations. For
instance, the largest Fast Swing Rate case (78.0) shows
a studentized residual close to zero under log
transformation (Jrstudent| = 0.18), but
noticeably higher under Box—Cox (Jrstudent| = 1.07).
A similar pattern holds for other extreme observations,

remains

suggesting that Box~Cox mitigates distortion of outlier
influence without overcompressing them.

In contrast, the log transformation plot (right) tightly
clusters the points along the diagonal, indicating high
predictive accuracy. However, this comes at the cost
of compressing the data scale, particularly diminishing
the relative influence of extreme values. This
compression risks oversimplifying the variability
inherent in sports data, potentially obscuring
meaningful insights about rare or high-variance events.
These results align with the findings in Table 2, which
highlight the trade-offs between transformations. While
the log transformation achieves the best statistical fit,
the Box-Cox transformation provides a better balance

between predictive accuracy and interpretability,

Actual vs Predicted (Log Transformed Scale)
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Figure 3. Diagnostic Plots for Residual Analysis of the

preserving the nuances of the data that are essential
for meaningful analysis in sports contexts. These
findings suggest that while transformations enhance
their
applicability varies depending on the context of sports

prediction accuracy and model reliability,

analytics.
The diagnostic plots in Figure 3 illustrate the
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residuals for regression models under three different

transformations of the dependent variable: no
transformation (A=1), Box-Cox transformation (A
=0.384), and log transformation (A=0). Each

transformation is evaluated using two metrics:
Residuals vs Fitted Values and Q-Q Plots of Residuals.
In the original model (A=1), the residuals vs fitted
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plot shows a distinct curvature and uneven spread,
indicating violations of linearity and homoscedasticity.
Furthermore, the Q-Q plot demonstrates significant
deviations from the diagonal line, particularly at the
tails, suggesting that the residuals are not normally
distributed. These patterns highlight substantial issues
with regression assumptions in the untransformed
model.

The Box-Cox transformation model (A=0.384)
exhibits marked improvements in residual behavior.
The residuals vs fitted plot shows a more random
distribution of residuals around the horizontal axis, with
reduced curvature and improved homoscedasticity.
Additionally, the Q-Q plot indicates that the residuals
align more closely with the diagonal line, demonstrating
an enhanced approximation of normality. These
improvements suggest that the Box-Cox transformation
effectively addresses the skewness in the original data
while preserving the relative scale of the values.

In the log-transformed model (A=0), the residuals
vs fitted plot shows a more consistent pattern compared
to the untransformed model, but minor curvature
persists, indicating slight departures from linearity. The
Q-Q plot shows good alignment with the diagonal line
in the center but reveals minor deviations at the tails.
While the log transformation improves normality, its
effect is less balanced compared to the Box-Cox
transformation.

Overall, these diagnostic plots suggest that the
Box-Cox transformation provides the best balance
between improving regression assumptions and
maintaining the interpretability of the data. The log
transformation, while effective in normalizing the data,
compresses the scale of extreme values, which can
diminish the interpretability of important outliers—an
essential consideration in sports analytics, where

extreme values often signify meaningful insights. The
untransformed model, by contrast, demonstrates the
poorest fit, underscoring the necessity of transformations
for addressing non-normality and improving model
assumptions. These findings highlight the Box-Cox
transformation as a practical and statistically robust
approach for handling non-normal data in sports
contexts.

LPGA Dataset

Table 3 presents a summary of the LPGA dataset,
including means, standard deviations, skewness,
kurtosis, and Shapiro-Wilk test results for the dependent
and independent variables. The dependent variable,
totPrize, exhibits substantial and extreme skewness
(2.73) and kurtosis (13.04), indicating a highly right-
skewed distribution with heavy tails. This is further
supported by the Shapiro-Wilk test (W = 0.71, p <
.001), which confirms a significant deviation from
normality. In contrast, the independent variables—
driveDist, fairPct, and avePutts—demonstrate relatively
low skewness and kurtosis, with Shapiro-Wilk test
results indicating no significant departures from
normality (p > .05).

Figure 4 illustrates the distribution of the dependent
variable (totPrize) under the three conditions: Original
(untransformed) (A=1), Box-Cox transformation with
MLE-derived A=0.10, and log transformation (A=0).
The log transformation appears to achieve a distribution
closer to normality, as indicated by reduced skewness
and kurtosis values.

Conversely, the Box-Cox transformation achieves
balance by reducing skewness while preserving the
relative scale of extreme values. While the visualized
distributions suggest improvements in normality, the

Table 3. Descriptive Statistics and Normality Tests for LPGA Dataset

Variables Mean Std. Skewness Kurtosis Shapiro-Wilk p-value
totPrize 522580.73 666704.20 2.73 13.04 0.71 <.001
driveDist 257.14 9.32 -0.01 2.57 0.993 0.745
fairPct 73.67 5.97 -0.08 2.86 0.995 0.885
avePutts 30.08 0.6 0.14 3.17 0.993 0.712
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Figure 4. Histogram of totPrize for the LPGA Dataset

necessity for further regression modeling with Box-Cox
transformation derives from its potential to better satisfy
regression assumptions such as homoscedasticity and
linearity, which are critical for reliable and interpretable
models.

To further evaluate the effects of these transformations
on regression model for the 158 observations, Table
4 presents a detailed comparison of regression models
for the LPGA dataset across three transformation

methods: Original (untransformed) (A=1), the Box-Cox
transformation using the MLE-based optimal A=0.10,
and the log transformation (A=0). The R? indicate an
improvement in explained variance after transformation,
with both the Box-Cox transformation and the log
transformation achieving R*>>0.4, compared to 0.2501
for the untransformed model. However, the AIC scores
suggest that the log-transformed model (A=0) achieves
the best model fit, with the lowest AIC value of 463.11,

Table 4. Comparison of regression models for LPGA dataset across different transformations

=1 4=0.10 /=0
(Original) (Box-Cox transformation) (log transformation)
Estimate Std. Estimate Std. Estimate Std.
(p-value) Error (p-value) Error (p-value) Error
1456669 26.17 12.73
£0 (0.633) 3044153 (0.164) 18.69 (0.02) 5.37
L 30936 0.272 0.078
p1 (driveDist) (<.001) 6281 (<.001) 0.038 (<.001) 0.01
. 44505 0.426 0.123
2 (fairPct) (<.001) 9867 (<.001) 0.059 (<.001) 0.02
-404481 -3.41 -0.978
3 (avePutts) (<.001) 78132 (<.001) 0.479 (<.001) 0.14
R 0.2501 0.4072 0.4085
AIC 4649.492 857.284 463.106
Relative RMSE 1.101 0.140 0.082

Note: dependent variable=totPrize. All regression coefficients are reported on the

scale of the transformed

dependent variable. The RMSE scaled by the mean of the dependent variable to allow comparison across

transformations.
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compared to 857.28 for the Box-Cox model and
4649.49 for the untransformed model. The relative
RMSE values also underscore improved predictive
accuracy after transformation. The log transformation
achieves the lowest RMSE (0.082), followed by the
Box-Cox transformation (0.140), while the untransformed
model exhibits the highest RMSE (1.101).

All independent variables maintained their statistical
significance (p < .001) and directional effects across
all transformation methods, indicating that the
relationships between predictors and the dependent
variable totPrize remained stable despite adjustments
in scale. The coefficients decreased in magnitude across
transformations, with the largest values observed in the
untransformed model and progressively smaller values
in the Box-Cox and log-transformed models. However,
this reduction in coefficient size reflects changes in
the scale of measurement introduced by the
transformations rather than a diminished influence of
the predictors. The consistency of these relationships
across models underscores the robustness of the
findings. While the transformations adjusted the scale
of the coefficients, their effects and significance
remained stable.

The relationship between actual and predicted values
across the three transformation methods is visualized
in Figure 5. In the first plot (original scale), the
predicted values deviate significantly from the diagonal
line, especially for extreme values, indicating a lack
of model fit. In the second plot (MLE-transformed

Actual vs Predicted (Original Scale)

Actual vs Predicted (MLE Transformed Scale)

scale), the predicted values align more closely with
the diagonal, reflecting an improved fit after addressing
skewness through the Box-Cox transformation. The
third plot (log-transformed scale) demonstrates the most
linear alignment with the diagonal line, showing that
the log transformation effectively regularized the scale
of the dependent variable. However, the log
transformation's tendency to overly diminish the
relative impact of extreme values, particularly evident
in sports data, may limit its interpretability in contexts
where outliers carry critical importance. These
visualizations reinforce the nuanced trade-offs between
statistical performance and contextual relevance across
transformation methods.

The summary statistics presented in the previous
table 4 provide a quantitative overview of the regression
models across different transformations. However,
these numerical summaries alone cannot fully capture
the extent to which key regression assumptions, such
as homoscedasticity and normality, are satisfied. To
address this, diagnostic plots were employed to visually
evaluate the residual patterns and normality of residuals
for the three transformations: Original (untransformed,
A=1), MLE-based Box-Cox transformation (A=0.10),
and log transformation (A=0) (Figure 6).

The Residuals vs Fitted plot for the untransformed
model (A=1) revealed a systematic pattern and uneven
spread of residuals, indicating a violation of the
homoscedasticity assumption. The residuals showed
greater variance at the extremes of the fitted values,

Actual vs Predicted (Log Transformed Scale)
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Figure 6. Diagnostic plots for residual analysis of the LPGA dataset across different transformation

suggesting that the model was not adequately capturing
the variance structure in the data. In contrast, the
MLE-based transformation (A=0.10) reduced the
systematic pattern and produced a more consistent
spread of residuals across the fitted values, reflecting
improved homoscedasticity. The log transformation (A
=0) also exhibited uniform residual variance, though

the effect of extreme values was notably diminished.

The Q-Q Residuals plot for the untransformed model
showed substantial deviations from the theoretical
normal distribution line, particularly in the tails,
suggesting that the residuals were heavily influenced
by outliers. The Box-Cox transformation (A=0.10)
substantially reduced this deviation, bringing the
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residuals closer to normality. The log transformation
(A=0) achieved the highest alignment with the
theoretical line, effectively normalizing the residuals.
However, the strong suppression of extreme values by
the log transformation may hinder interpretability,
particularly in sports analytics, where outliers often
carry significant contextual meaning.

Overall, the comparison of diagnostic plots
demonstrates that the MLE-based transformation strikes
a balance between improving regression assumptions
and preserving the interpretability of extreme values.
While the log transformation provides the highest
degree of normality, its tendency to overly diminish
the influence of extreme values limits its applicability
in contexts where such values are analytically
meaningful.

Discussion

Advancements in ICT technology have transformed
sports data from simple frequency-based records to vast
repositories of big data. This shift has introduced
diverse data distributions that often deviate from
normality, posing challenges to regression analysis—a
widely used method for examining linear relationships
between variables. As Cooper et al. (2007) and Vagenas
et al. (2018) highlighted, addressing non-normality is
critical for ensuring the reliability and interpretability
of sport analytical outcomes. Their work demonstrates
the importance of methodological adaptations when
traditional assumptions about data distribution are
violated.

Despite the necessity of addressing non-normality,
sports analytics has relied heavily on log transformations
to address non-normality (Nevill & Atkinson, 1997,
Reid et al., 2010; Atkinson & Batterham, 2012). While
log transformations are effective in meeting statistical
assumptions, they often compress extreme values
excessively, potentially reducing their interpretive
value. This limitation is critical in sports contexts where
outliers often represent significant performance metrics
or strategic insights. For instance, Lionel Messi’s
record-setting 50 goals in the 2011—12 La Liga season
reflect not just statistical anomalies but also tactical

superiority and unique team dynamics. Over-transforming
such data risks obscuring its analytical and contextual
significance. Similarly, in golf, extraordinary prize
earnings in a single tournament can indicate unique
strategies or exceptional performances, and in baseball,
extreme values such as high strikeout rates or
exceptional hit distances often reflect key player
characteristics.

Preserving the intrinsic meaning of outliers is
essential in sports data analysis to ensure that variability
is not overly suppressed, allowing meaningful
interpretation within the context of performance
evaluation. This balance between statistical rigor and
contextual relevance is particularly critical in sports
analytics. In line with this, Empacher et al. (2023)
emphasized that outliers in sports data are not merely
statistical noise but carry critical information about
game contexts or meaningful outcomes. Suppressing
or removing these outliers can result in the loss of
valuable insights during data interpretation.

The findings of the current study revealed that both
transformations enhanced model fit compared to
untransformed models. Specifically, the Box-Cox
transformation recorded higher R? values than the log
transformation in baseball data and produced
comparable R? values in golf data, demonstrating its
effectiveness in improving explanatory power.

The coefficient of determination (R?) is calculated
as R%?= 1-—(SSR/SST), where SSR represents the
residual sum of squares, and SST represents the total
sum of squares. The finding that the Box-Cox
transformation recorded higher or similar R? values
suggests its ability to flexibly adjust data distributions
while effectively capturing data variability within the
model, minimizing distortion. This highlights its
advantage over the log transformation, which may
compress data excessively, potentially failing to reflect
some variability in the model.

In terms of model simplicity, the log transformation
achieved the lowest AIC among all models. AIC,
AIC = =2 xIn(L) + 2k,
represents the maximum likelihood and k the number

calculated as where L

of parameters, assesses the balance between model
complexity and explanatory power. The lower AIC of
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the log-transformed model suggests that it effectively
normalized the data while maintaining a simple
structure. However, this simplicity may come at the
expense of reducing the contribution of outliers, as
observed in prior research (Hoaglin & Velleman, 1995;
Baesens et al., 2009; Khakifirooz et al., 2021), which
cautioned that log transformations could diminish the
interpretability of critical extreme values in data. This
aligns with the present study’s findings, emphasizing
the need for careful consideration when applying log
transformations.

The analysis of predictive accuracy, as measured
by RMSE, provided further insights into the trade-offs
between transformation methods. While empirical
results indicate that the log transformation achieved the
lowest RMSE, suggesting reduced prediction errors,
this finding requires a nuanced interpretation within
the context of sports data. The lower RMSE in
log-transformed models often stems from the aggressive
compression of informative outliers—such as superstar
athletes or extreme performance cases—which can
create a statistical illusion of higher predictive accuracy
by artificially minimizing residual variance.

As observed in our results, the extreme case of a
78.0 Fast Swing Rate yielded a studentized residual
close to zero under log transformation (|rstudent| =
0.18), whereas it remained meaningfully higher under
Box~Cox (Jrstudent| = 1.07). This disparity, also
illustrated in the “Actual vs Predicted” plots (Figures
2 and 5), indicates that the log transformation squashes
unique performance signals to achieve tighter clustering.
In contrast, the Box-Cox transformation mitigates the
distortion of outlier influence without overcompressing
them, prioritizing contextual integrity over the mere
minimization of numerical error. Therefore, despite the
slightly higher RMSE, the Box-Cox transformation
serves as a more valid alternative for sports analytics
by preserving the variability that defines elite
performance.

Residual and Q-Q plots (Figures 3 and 6) reinforced
these findings. The original models showed significant
deviations from normality and heteroscedasticity, while
the Box-Cox transformation improved these assumptions
without diminishing the relative importance of extreme

values. Although the log transformation further
enhanced the normality of residuals, its compression
of data raises concerns about potential information loss.

Beyond statistical validation, the Box-Cox
transformed models offer actionable insights for
practitioners in baseball and golf. For the MLB Fast
Swing Rate model, the results indicate that while
Average Exit Velocity (B3 = 0.87) is a significant
predictor, Average Swing Length (8, = 2.12) exerts an
even more dominant positive influence. This suggests
that achieving a high swing rate is not merely a function
of raw power; rather, it requires a swing mechanics
that ensures a sufficient acceleration zone (swing
length) before impact. Furthermore, the relatively small
coefficient for Age (8,~0.10 implies that elite hitters
may mitigate age-related declines in swing speed
through disciplined physical conditioning and technical
adjustments.

In the LPGA total prize money (totPrize) model,
the findings underscore the paramount importance of
short-game proficiency. Average Putts (avePutts,
B3 = —3.41) emerged as the most powerful negative
predictor, meaning that reducing even a single putt per
round has a far greater relative impact on earnings than
increasing driving distance. Additionally, the positive
influence of Fairway Percentage (fairPct, B = 0.43)
compared to Driving Distance (driveDist, f; = 0.27)
suggests that a strategy prioritizing stability and
accuracy may be more economically efficient for
professional golfers than an aggressive focus on
distance alone. By utilizing the Box-Cox transformation,
these models preserve the impact of top-tier performers
while providing a reliable framework for identifying
these key performance drivers.

These findings underscore the critical balance
required in selecting transformation methods for sports
data analysis. While the log transformation effectively
normalizes data distributions and optimizes regression
assumptions, its tendency to compress extreme values
can limit its interpretive value in contexts where such
values are essential for understanding performance and
strategy. In contrast, the Box-Cox transformation
provides a robust alternative by addressing skewness
and improving

normality ~without excessively
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diminishing the impact of outliers. This approach not
only enhances the explanatory power of regression
models but also preserves the variability and contextual
significance of extreme values, which are often pivotal
in sports analytics.

In sports contexts, outliers frequently embody
extraordinary performances, unique tactical decisions,
or game-defining moments, making their accurate
representation critical for meaningful analysis. By
maintaining the integrity of these extreme values, the
Box-Cox transformation aligns better with the dual
demands of statistical rigor and practical applicability.
As demonstrated in this study, this balance allows for
a more nuanced interpretation of sports data, ensuring
that analytical outcomes remain relevant and actionable
within the competitive and strategic landscapes of
sports.

Limitations & Future Directions

While this study demonstrates the utility of Box-Cox
and log transformations in addressing the non-normality
of sports data, several limitations and areas for
improvement should be acknowledged. First, both
transformations alter the original scale of the data,
necessitating back-transformation for interpretation and
estimation. This process can introduce re-transformation
bias, leading to discrepancies between predictions made
on the transformed scale and their counterparts on the
original scale (Manning, 1998). Specifically, the mean
values calculated in transformed and back-transformed
data may differ, particularly for datasets with highly
skewed distributions or non-normal residuals (Asuero
& Bueno, 2011). For instance, in sports contexts, the
bias may obscure subtle yet meaningful variations in
player performance metrics when interpreting back-
transformed results. While this issue is less problematic
for symmetric data with minimal outliers and
homoscedastic residuals, such conditions are rare in
sports data, where extreme values often hold critical
contextual significance. Researchers must carefully
evaluate these trade-offs, balancing statistical rigor with
the interpretability of results, particularly in datasets
where outliers represent meaningful performance

metrics.

Second, the Box-Cox transformation is limited to
positive data values. Although the datasets in this study
contained only positive dependent variables, datasets
with negative values require an Offset Addition
approach. This method involves adding a constant to
all data points, shifting the minimum value above zero
to enable the transformation (Huang et al., 2023).
However, the choice of offset is critical. An excessively
large or small constant can distort the original data
distribution or obscure meaningful patterns (Riani et
al., 2023). Researchers must carefully balance the need
for transformation with preserving the interpretive
integrity of the data.

Third, this study focused on datasets from baseball
and golf, sports where ICT technologies are extensively
used for performance tracking. These datasets provided
clear examples of non-normal distributions. However,
sports with high real-time variability, such as soccer
or basketball, may pose unique challenges due to the
dynamic nature of play. For instance, Rein and
Memmert (2016) highlight that temporal dependencies
in soccer datasets complicate traditional analytical
approaches, emphasizing the need for adaptable
transformation methods capable of addressing the
dynamic strategies, situational contexts in such sports.
Future studies should explore the applicability of
transformation methods in these contexts, taking into
account factors such as temporal variability and
game-specific situational dynamics.

Fourth, it is important to note that the findings of
this study are most applicable to positive continuous
variables, such as swing rates, driving distances, and
prize money. While Box-Cox and log transformations
work well for these types of data, other common sports
metrics—such as counts (e.g., goals or fouls) or binary
outcomes (e.g., win/loss)—might require different
analytical methods. For these variables, Generalized
Linear Models (GLMs) could be better suited than a
standard linear regression with transformations. Future
research should compare these different models to
identify the most robust approach for various types of
sports data.

Finally, while this study highlights the strengths of
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the Box-Cox and log transformations, alternative
methods warrant exploration. For example, Yeo-
Johnson transformations handle both positive and
negative values without requiring offset addition,
offering flexibility for datasets with mixed data ranges.
Moreover, machine learning-based normalization
techniques, which adapt dynamically to complex data
characteristics, hold promise for addressing non-
normality in modern sports analytics. By integrating
these methods and expanding the scope of analysis to
include diverse sports and contexts, future research can
enhance the precision, interpretability, and practical

utility of transformation approaches in sports analytics.
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