
Introduction1)

 
Advances in computing technology, such as 

improvements in CPU and GPU performance, have 
enabled the efficient computation of neural networks, 
while innovations in Information and Communication 
Technology (ICT), including wearable devices and 
real-time tracking systems, have transformed data 
collection and analysis (Ardagna et al., 2016; Huang 
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et al., 2017). These developments have driven sports 
analytics from simple, frequency-based metrics to 
detailed analyses incorporating multidimensional data. 
For instance, in baseball, player performance evaluation 
now integrates advanced metrics like pitch velocity, 
spin rate, and movement, collected in real time. 
Similarly, in soccer, analytics has expanded beyond 
basic indicators like pass success rates to include 
metrics such as sprint speeds, heart rate variability, and 
positional movements. In professional golf now utilizes 
advanced ball-tracking systems to analyze every shot’s 
trajectory and its impact on performance and financial 
outcomes. The growing complexity and volume of 
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Abstract
 

Advancements in Information and Communication Technology (ICT) and big data have significantly 
transformed sports analytics, enabling the collection of complex, multidimensional datasets. However, sports 
data often exhibit non-normal distributions, skewness, and outliers, which pose challenges for linear models 
used in association analysis. In this study, the effectiveness of the Box-Cox transformation in addressing 
these issues was evaluated using datasets from ICT-based sports data, specifically datasets from Major League 
Baseball (MLB) and the Ladies Professional Golf Association (LPGA). Dependent variable distributions, 
regression model performance, and residual patterns were compared before and after the transformation. The 
Box-Cox transformation effectively reduced skewness and improved normality, ensuring that fundamental 
regression assumptions such as homoscedasticity and linearity were satisfied. Improved model fit was observed 
across the datasets, as evidenced by higher R² values, lower Akaike Information Criterion (AIC) scores, and 
more evenly distributed residuals. These findings demonstrate that the Box-Cox transformation enhances the 
reliability and interpretability of regression models in sports analytics, particularly for non-normal data, by 
addressing both distributional characteristics and residual behaviors.
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sports data has facilitated applications in diverse 
domains, including player performance evaluation, 
game strategy optimization, and injury risk assessment 
(Bai & Bai, 2021).

Sports analytics using ICT based big data can be 
broadly categorized into two primary approaches. The 
first focuses on developing predictive models, primarily 
driven by deep learning, which excel in predictive 
accuracy. These models have been applied to various 
analyses, such as predicting player performance, 
assessing injury risks, and forecasting game outcomes 
(Kumar et al., 2024). By learning complex patterns in 
data, deep learning enables precise predictions. 
However, its black-box nature often limits its ability 
to clearly explain relationships between variables, 
posing significant challenges to interpretability 
(Castelvecchi, 2016). While predictive accuracy is 
important, sports analytics must also provide insight 
into the underlying processes influencing outcomes 
(Amendolara et al., 2023). Without understanding how 
independent variables interact and affect results, the 
external validity of deep learning models may remain 
limited. 

Given the interpretability limitations of deep learning, 
researchers frequently employ regression analysis to 
explore interactions and relationships between variables. 
Regression analysis assumes a linear relationship 
between dependent and independent variables, with the 
slope representing the strength of this relationship. This 
approach is a robust tool for quantifying the 
contributions of independent variables to dependent 
outcomes. However, its reliability depends on satisfying 
key assumptions such as normality, homoscedasticity, 
and linearity. Failure to satisfy these assumptions can 
result in biased coefficient estimates and unreliable 
interpretations (Osborne & Waters, 2002).

Modern sports data, such as scoring metrics, speed, 
distance, and playing time, frequently exhibit non- 
normal distributions. This tendency is further influenced 
by the increasing complexity of contemporary datasets, 
which are multidimensional and incorporate player 
movements, game contexts, and environmental factors. 
Unlike earlier sports data that often featured relatively 
simple, frequency-based structures, modern datasets 

capture the intricate dynamics of real-time interactions 
and external influences, inherently resulting in more 
complex distributions. These datasets are increasingly 
enriched through ICT-based technologies such as GPS 
tracking, wearable devices, and sensor networks, which 
enable the real-time collection of highly detailed 
metrics. However, these detailed metrics often exhibit 
skewed distributions, extreme values (outliers), or 
non-linear relationships between variables, posing 
challenges for conventional regression models to 
accurately capture underlying patterns.

Conducting regression analysis with non-normally 
distributed data can lead to biased coefficient estimates 
and challenges in interpretation. When normality 
assumptions are violated, the residuals of the model 
may not meet the required conditions, further 
compromising the validity of the analysis. Similarly, 
the lack of homoscedasticity—where residual variance 
is unequal across levels of an independent variable—
makes reliable inference difficult. To address these 
challenges, researchers have increasingly turned to the 
Box-Cox transformation, a statistical technique 
designed to approximate normality in data distributions 
(Osborne, 2010; Zhang & Yang, 2017; Atkinson et al., 
2021). By modifying data using an optimized exponent 
(λ), the Box-Cox transformation effectively reduces 
skewness and kurtosis in non-normal datasets. The 
optimal λ is determined by maximizing the log- 
likelihood function (Box & Cox, 1964; Zhou & Zou, 
2024). Applying this transformation to dependent 
variables enables regression models to better adapt to 
the data’s underlying distribution, making it easier to 
satisfy normality assumptions and improving the 
reliability and interpretability of results.

For example, positively skewed variables such as 
sprint speeds collected from wearable GPS devices or 
the frequency of high-intensity runs during a soccer 
match can be transformed to approximate normality, 
ensuring that residuals exhibit the required distributional 
properties for valid coefficient estimation. Additionally, 
when non-linear relationships exist—such as between 
a basketball player's cumulative workload (e.g., total 
accelerations and decelerations during a game) and 
injury risk metrics derived from wearable sensors—the 
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transformation can help clarify these relationships by 
normalizing the dependent variable. Furthermore, by 
reducing variability in complex, multidimensional 
datasets, the transformation increases the likelihood of 
meeting the assumption of homoscedasticity, thereby 
simplifying the interpretation of results in advanced 
sports analytics.

While foundational work by Nevill and Atkinson 
(1997) and Cooper et al. (2007) established critical 
frameworks for addressing non-linearity and 
measurement reliability in sports science, a systematic 
validation of these techniques remains limited in the 
context of contemporary ICT-based multidimensional 
big data. This study addresses this gap by providing 
a systematic comparison between Box-Cox and log 
transformations, utilizing high-fidelity performance 
data from MLB and the LPGA. By evaluating these 
methods against the complex, high-dimensional metrics 
that characterize the modern era, this research offers 
a refined analytical framework tailored to the unique 
data properties of today’s technology-driven sports.

 
Theoretical Background

 
Characteristics of Sports Data and the Need for 
the Box-Cox Transformation
 
Sports data stands apart from other data types due 

to its multidimensional, dynamic, and context-sensitive 
nature. Unlike static datasets, sports data is generated 
in real time during games or player actions, capturing 
situational complexities that vary across different 
sports. For example, in baseball, a batter’s swing speed 
and the ball’s launch angle are influenced by 
game-specific factors, while in soccer, sprint speed and 
player positioning change dynamically based on the 
match’s flow. These characteristics make sports data 
uniquely challenging for traditional statistical models 
that rely on simplified assumptions about data 
distributions (Balague et al., 2013; Morgulev et al., 
2018).

A common issue in sports data is its frequent 
deviation from normality, which underscores the 
necessity for advanced transformation techniques like 

the Box-Cox transformation. Variables such as scoring 
metrics, playing time, and physiological measurements 
often exhibit positive skewness or extreme values due 
to the dynamic and context-specific nature of sports 
(Bai & Bai, 2021). For example, batted ball distance 
in baseball may feature extreme values resulting from 
home runs or short fly balls, while sprint distance in 
soccer often displays skewness due to differences in 
individual playing styles and situational demands (Rein 
& Memmert, 2016). In the context of professional golf, 
performance-related financial data such as total prize 
money typically exhibits extreme right-skewness due 
to the ‘winner-take-all’ nature of tournament prize 
structures. Such financial outcomes do not follow a 
normal distribution, as a small percentage of top-tier 
players earn a disproportionately large share of the total 
earnings -with the top 10% capturing nearly 55% of 
the purse- presenting a significant challenge for 
standard regression-based analysis (Rinehart, 2009). 
These distributional characteristics can violate the 
normality assumption of many statistical methods, 
leading to biased estimates and reduced model 
reliability.

The presence of outliers adds another layer of 
complexity. In sports, outliers often result from 
exceptional performances or unique game scenarios. 
For instance, a baseball pitcher achieving an unusually 
high number of strikeouts or a soccer team recording 
an extraordinary goal count in a single match are not 
merely statistical anomalies but carry meaningful 
insights about performance or strategy. Analytical 
methods must account for these outliers by preserving 
their contextual significance while addressing their 
potential to skew broader patterns.

Traditional transformation methods, such as log or 
square root transformations, have been commonly 
employed to address non-normality but often prove 
insufficient for the complexities of sports data. Log 
transformation, for instance, is restricted to positive data 
and cannot handle variables that include zero or 
negative values, such as point differentials (Lee, 2020). 
Similarly, square root transformations may reduce 
skewness but fail to adequately manage extreme values 
or non-linear relationships (Shi et al., 2013). These 
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limitations highlight the need for a more flexible and 
robust approach tailored to the unique distributional 
and contextual characteristics of sports data.

The Box-Cox transformation addresses these 
challenges by optimizing the λ parameter to adjust data 
distributions dynamically. This approach reduces 
skewness and kurtosis, aligning the data with the 
assumptions of statistical models while largely 
preserving key characteristics of the dataset (Marimuthu 
et al., 2022). Unlike simpler methods, the Box-Cox 
transformation accommodates the contextual nuances, 
enabling more accurate modeling of its inherent 
variability. This makes it particularly suitable for sports 
analytics, where the interpretability of extreme values 
and the preservation of data variability are critical. By 
bridging the gap between statistical rigor and contextual 
relevance, the Box-Cox transformation offers a 
methodological framework that enhances the reliability 
of analytical results across diverse applications, from 
performance evaluation to strategic decision-making.

 
Mechanism of the Box-Cox Transformation
 
The Box-Cox Transformation is a statistical 

technique proposed by Box and Cox in 1964 to 
normalize data distributions (Box & Cox, 1964). This 
method is used to transform non-normal data into forms 
suitable for statistical models such as linear regression, 
thereby improving the reliability and predictive 
accuracy of these models. Specifically, the Box-Cox 
Transformation reduces skewness and kurtosis, 
ensuring that the fundamental assumptions of statistical 
models—such as normality and homoscedasticity—are 
met (Draper & Smith, 1998).

The transformation operates on a parameter λ, which 
non-linearly adjusts the data. The transformation is 
defined as follows: 

   Equation (1)

 
In Equation (1),  represents the observed value 

of the original data, and  denotes the transformed 

data. The parameter λ is a transformation coefficient 
optimized to normalize the data distribution. The goal 
of the Box-Cox Transformation is to adjust the data 
distribution to approximate normality, ensuring that the 
residuals of statistical models exhibit normality.

Unlike the log transformation (λ=0), which applies 
a fixed and uniform adjustment to the data, the Box-Cox 
transformation uses Maximum Likelihood Estimation 
(MLE) to determine the optimal λ value. MLE provides 
a statistically rigorous framework to estimate the 
parameter that maximizes the likelihood of the observed 
data given the model (Marimuthu et al., 2022). This 
approach minimizes skewness and kurtosis while 
aligning the transformed data closely with a normal 
distribution. This is essential for statistical modeling, 
as it ensures that key assumptions—such as normality 
and homoscedasticity—are satisfied, thereby enhancing 
the validity and interpretability of inferential results. 
The optimization of λ is based on the maximization 
of the log-likelihood function, expressed as:

 

 
  Equation (2)

 
In Equation (2), n is the number of observations, 
 is the mean of the transformed data. The optimal 

λ value maximizes ℓ(λ), minimizing skewness and 
kurtosis while ensuring normality. The result of the 
transformation is that  approximates a normal 
distribution, making the data suitable for statistical 
modeling. This adaptive feature of the Box-Cox 
Transformation distinguishes it from static 
transformations like the log transformation, which may 
not adequately address varying degrees of skewness 
or kurtosis across datasets.

This flexibility is particularly important in sports 
analytics, where datasets often exhibit non-normality 
and extreme values. The adaptive nature of the Box-Cox 
Transformation enables it to preserve critical data 
characteristics, such as the relative influence of outliers, 
while ensuring that the data conforms to the 
assumptions of regression models. This makes the 
transformation a robust tool for improving the reliability 
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and predictive accuracy of statistical analyses in 
contexts where the nuances of data variability are 
crucial.

 
Methods

Dataset
 
This study aimed to explore the effectiveness of the 

Box-Cox transformation in addressing non-normality 
in sports data analysis. Representative datasets from 
two distinct types of sports—baseball and golf—were 
analyzed. Each sports was chosen to reflect different 
competition structures: baseball as a representative 
turn-based sport and golf as a representative individual 
sports (sports where individual skills and strategies 
primarily determine the outcome).

Both baseball and golf serve as emblematic 
examples of modern sports ICT applications, as they 
generate extensive big data through real-time ball- 
tracking technologies. These technological advancements 
have revolutionized sports analytics, enabling precise 
measurement and detailed analysis of player 
performance. Such innovations highlight the 
transformative potential of ICT in shaping data-driven 
approaches to sports science and analytics. Detailed 
descriptions of each dataset are provided below.

 
Major League Baseball (MLB) Dataset
 
The Baseball Savant platform, a hallmark of sports 

ICT, provides a wealth of advanced data, including 
pitch spin rates, batted ball distances, exit velocities, 
and launch angles, showcasing the cutting-edge 
capabilities of big data in sports. Leveraging data from 
Baseball Savant, this study analyzed the cumulative 
batted ball performance of hitters 133 qualified hitters 
who met the minimum threshold of 502 plate 
appearances during the 2024 season using Box-Cox 
regression. Key variables from the dataset included Fast 
Swing Rate, Avg Swing Length, Avg Exit Velocity, 
and Avg Launch Angle, which were selected to capture 
critical aspects of batting performance.

In this study, 'Fast Swing Rate' was designated as 

the dependent variable for the primary analysis. Beyond 
its role as a measure of swing speed and consistency 
directly relevant to batting performance, its selection 
serves an exploratory purpose to investigate the 
mechanical consistency and underlying intent of hitters 
when executing high-velocity swings. This metric 
allows for a retrospective examination of how a hitter’s 
deliberate intent to swing fast aligns with technical 
elements (e.g., swing length, exit velocity, and launch 
angle) and physical factors (e.g., age and physical 
fitness), thereby capturing the behavioral consistency 
of elite performers. Moreover, the use of ICT-based 
precision data ensures the high reliability and 
reproducibility of this metric, further supporting its role 
as a robust dependent variable within this 
methodological framework. Detailed descriptions of 
each variable are provided below.

 
Fast Swing Rate: The percentage of a player’s 

swings that reach a speed of at least 75 MPH
Avg Swing length: The average of total distance 

(in feet) traveled by the bat's barrel in 
three-dimensional space (X/Y/Z) from the 
start of the bat's motion to the point of impact 
with the ball.

Avg Exit Velocity: The average of exit velocity of 
the batted ball as tracked by Statcast. 

Avg Launch angle: The average of launch angle 
of the batted ball as tracked by Statcast.

 
Ladies Professional Golf Association (LPGA) 
Golfers’ Performance Data
 
The dataset titled “LPGA 2022 Player Performance” 

was originally sourced from the official LPGA website. 
Provided under the Public Domain license, the dataset 
was designed to analyze professional golf player 
performance and contains 158 observations across 16 
variables. For this study, four key variables were 
selected for Box-Cox regression: totPrize, driveDist, 
avePutts, and fairPct. Detailed descriptions of these 
variables are as follows:

 
totPrize: Total official prize winnings in dollars. 
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driveDist: Average drive distance on par 4 and 5 
holes in yards. 

fairPct: Percentage of drives that landed on fairways. 
avePutts: Average number of putts per round.
 
Comparison and Analysis Procedures
 
In this study, datasets from MLB and LPGA were 

used to analyze the changes in dependent variables after 
applying two transformation methods: the Box-Cox 
transformation and the log transformation. The results 
of these transformations were compared with the raw 
data to assess their effects on data normality and 
regression model performance. The detailed steps are 
as follows.

As the first step, the descriptive statistics (mean, 
standard deviation, skewness, and kurtosis) of the raw 
data for each variable were calculated. These metrics 
were used to evaluate whether the data tended to follow 
a normal distribution. Histograms were then used to 
visualize and evaluate the distributional characteristics 
of the data. To statistically verify normality, the 
Shapiro-Wilk test was conducted. The null hypothesis 
(H0) of the Shapiro-Wilk test is that “the data follow 
a normal distribution.” If the null hypothesis is rejected, 
it can be concluded that the data do not follow a normal 
distribution (Shapiro et al., 1968).

In the next step, the Box-Cox transformation and 
the log transformation were employed for each 
dependent variable. For the Box-Cox transformation, 
the optimal λ value was estimated using MLE to 
minimize skewness and kurtosis while approximating 
a normal distribution. In parallel, a log transformation 
(corresponding to λ=0 in the Box-Cox framework) was 
conducted. After each transformation, the distributional 
changes in the data were reassessed using histograms 
and the Shapiro-Wilk test to evaluate normality. This 
process enabled comparisons among the raw data, 
Box-Cox-transformed data, and log-transformed data, 
offering insights into each method’s effectiveness in 
addressing skewness and improving normality.

Finally, regression analyses were performed using 
the raw (λ = 1), Box-Cox-transformed (λ = determined 
by MLE), and log-transformed data (λ = 0). A Gaussian 

error distribution with constant variance was assumed 
for these models. To ensure a valid and consistent 
comparison of the Akaike Information Criterion (AIC) 
across different transformation scales, the Jacobian 
determinant was incorporated into the log-likelihood 
function used for both λ estimation and AIC 
calculation. This adjustment accounts for the change 
in the geometric scale of the data, thereby enabling 
a direct comparison between the untransformed and 
transformed models. Additionally, R² and RMSE values 
are scale-dependent and not directly comparable across 
different transformations, relative RMSE (normalized 
by the mean) and qualitative diagnostics of residuals 
were utilized as supplementary criteria for model 
evaluation. Model fit was evaluated using metrics such 
as R², Akaike Information Criterion (AIC), and Root 
Mean Square Error (RMSE), along with an examination 
of residual plots. This comparative approach underscored 
the relative strengths and limitations of each 
transformation method, highlighting the Box-Cox 
transformation’s ability to balance improved regression 
model assumptions with the preservation of critical 
characteristics of sports data.

While regression coefficients in Box-Cox and 
log-transformed models are not directly interpretable 
in the original units (e.g., percentages or dollars), they 
provide essential information regarding the direction 
of influence (Positive/Negative), statistical significance. 
Furthermore, the magnitude of these coefficients reflects 
the sensitivity of the transformed dependent variable 
to a one-unit change in each respective predictor. While 
direct comparison of magnitudes across variables with 
different units requires caution, these values effectively 
quantify the specific contribution of each factor within 
the modeling framework.

 
Results

MLB Dataset
 
Table 1 provides a summary of the MLB dataset, 

including means, standard deviations, skewness, kurtosis, 
and Shapiro-Wilk test results for the variables used in 
the analysis: Fast Swing Rate, Age, Avg Swing Length, 
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Avg Exit Velocity, and Avg Launch Angle. Given that 
Fast Swing Rate could potentially be influenced by a 
player's age, the variable Age was included in the 
regression analysis to control for its effects. The results 
then reveal important characteristics of the dataset.

The dependent variable, Fast Swing Rate, exhibits 
moderate skewness (.79) and moderate kurtosis (2.75), 
indicating a distribution that is moderately asymmetric 
with heavier tails. Furthermore, the Shapiro-Wilk test 
(W = 0.92, p < .001) confirms significant deviation 
from normality. Among the independent variables, Age 
shows slight skewness (0.46) and moderate kurtosis 
(3.13), with its Shapiro-Wilk test (W =.98, p =.02) 
suggesting a deviation from normality. Similarly, Avg 
Swing Length displays slight negative skewness (-.58) 
and higher kurtosis (3.86), with the Shapiro-Wilk test 
(W = 0.97, p =.006) confirming non-normality. On the 
other hand, Avg Exit Velocity and Avg Launch Angle 
exhibit near-symmetric distributions, with minimal 

skewness (.26 and .05, respectively) and Shapiro-Wilk 
test results indicating no significant departure from 
normality (p > .05).

Figure 1 illustrates the distribution of the dependent 
variable, Fast Swing Rate, under three conditions: 
Original (untransformed; λ=1), Box-Cox transformation 
with the MLE-derived optimal λ (0.384), and log 
transformation (λ=0). While Table 1 provides numerical 
insights into skewness and kurtosis, these histograms 
visually depict the effectiveness of each transformation 
in reducing skewness and bringing the distribution 
closer to normality.

The log transformation shifts the distribution from 
its original positive skewness toward a negatively 
skewed form. This highlights the potential drawback 
of log transformations in some contexts, as they may 
over-correct skewness and create distributions that 
deviate from normality in the opposite direction. This 
outcome can reduce interpretability, especially for 

Variables Mean Std. Skewness Kurtosis Shapiro-Wilk p-value
Fast Swing Rate 25.92 19.23 0.79 2.75 0.92 <.001

Age 27.73 3.65 0.46 3.13 0.98 0.02
Avg Swing Length 7.33 0.41 -0.58 3.86 0.97 0.006
Avg Exit Velocity 89.71 2.25 0.26 3.32 0.99 0.62
Avg Launch Angle 13.60 4.04 0.05 2.73 0.99 0.89

Table 1. Descriptive statistics and normality tests for MLB dataset

Figure 1. Histogram of fast swing rate for the MLB dataset
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datasets where symmetry is critical for analysis. 
Especially, in sports analytics, extreme values often 
represent critical outliers, such as extraordinary 
performance or unique events, which hold significant 
insights. By overly compressing these extremes, the 
log transformation may limit the interpretability of such 
data points.

The Box-Cox transformation, on the other hand, 
offers a balanced approach. It reduces skewness 
effectively while preserving the relative scale of 
extreme values, making it particularly suited for sports 
data analysis, where such outliers can carry meaningful 
contextual importance. 

Although the visualized distributions demonstrate 
marked improvements in normality, further evaluation 
using regression modeling is essential to assess the 
transformations’ impact on satisfying key assumptions, 
such as homoscedasticity and linearity, which are 
crucial for generating reliable and interpretable models. 
Table 2 contains these results, summarizing the key 
metrics and transformations used in the regression 
analysis.

To further evaluate the effects of these transformations 
on regression model performance, Table 2 presents a 
detailed comparison of regression models for the MLB 
dataset across three transformation methods: Original 
(untransformed; λ=1), the Box-Cox transformation 
using the MLE-based optimal λ=0.384, and the log 
transformation (λ=0). The results highlight significant 
differences in model performance and interpretation 
across the transformations.

The R² show moderate improvements in explained 
variance after transformation. The Box-Cox 
transformation achieved the highest R² value (0.6888), 
followed by the log transformation (0.6598) and the 
untransformed model (0.6493). This suggests that 
transformations help better capture the variability in 
the dependent variable, Fast Swing Rate, as explained 
by the independent variables.

The AIC scores indicate the log-transformed model 
achieves the best model fit, with the lowest AIC value 
(253.58), followed by the Box-Cox transformation 
(492.81) and the untransformed model (1004.64). 
Lower AIC scores emphasize that the log 

λ=1
(Original)

λ=0.384
(Box-Cox transformation)

λ=0
(log transformation)

Estimate
(p-value)

Std. 
Error

Estimate
(p-value)

Std. 
Error

Estimate
(p-value)

Std. 
Error

β0 -585.20
(<.001) 41.68 -85.08 (<.001) 5.73 -29.83

(<.001) 2.268

β1 (Age) 0.764
(.012) 0.298 0.104

(.012) 0.04 0.04
(0.017) 0.016

β2 (ASL) 10.18
(<.001) 2.725 2.12

(<.001) 0.375 1.277
(<.001) 0.148

β3 (AEV) 6.22
(<.001) 0.481 0.873

(<.001) 0.066 0.294
(<.001) 0.026

β4 (ALA) -0.006
(0.982) 0.270 -0.014

(0.712) 0.037 -0.008
(0.561) 0.014

R2 0.6493 0.6888 0.6598
AIC 1004.644 492.806 253.585

Relative RMSE 0.437 0.269 0.215
Note: dependent variable=Fast Swing Rate; ASL: Avg Swing Length; AEV: Avg Exit Velocity; ALA: Avg 
Launch Angle. All regression coefficients are reported on the scale of the transformed dependent variable. 
Relative RMSE: The root mean square error (RMSE) scaled by the mean of each dependent variable to allow 
comparison across transformations.

Table 2. Comparison of regression models for mlb dataset across different transformations
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transformation provides the most parsimonious model 
among the three approaches.

The regression coefficients (β) demonstrate substantial 
differences across transformations, particularly for 
predictors like Age (β₁), Avg Swing Length (β₂), and 
Avg Exit Velocity (β₃). Across all transformation 
methods, Avg Swing Length (β₂) and Avg Exit Velocity 
(β₃) consistently exhibit strong statistical significance 
(p <.001), indicating their robust influence on Fast 
Swing Rate. Notably, the impact of Age (β₁) becomes 
less pronounced in the log- transformed model (p=.017) 
compared to the untransformed and Box-Cox- 
transformed models (p=.012), suggesting that the choice 
of transformation method can affect the perceived 
strength of certain predictors. On the other hand, Avg 
Launch Angle (β₄) remains statistically insignificant 
across all transformations (p >.5), implying that it has 
a negligible direct effect on Fast Swing Rate. 

The relative RMSE values underscore improved 
predictive accuracy after transformation. The log- 
transformed model achieved the lowest RMSE (0.215), 
followed by the Box-Cox model (0.269), while the 
untransformed model exhibited the highest RMSE 
(0.437). These RMSE values align with the visual 
patterns observed in Figure 2, which illustrates the 
relationship between actual and predicted values of Fast 
Swing Rate across three transformation methods: 
Original (untransformed), the Box-Cox transformation 
(MLE-derived λ), and the log transformation (λ = 0).

In the original scale plot (left), the scatterplot 
exhibits significant dispersion around the diagonal line, 
particularly for extreme values, indicating greater 
prediction errors. Furthermore, the uneven spread of 
points suggests violations of key regression 
assumptions, such as homoscedasticity and linearity.

The Box-Cox transformation plot (center) 
substantially reduces the dispersion while still retaining 
meaningful deviation for extreme observations. For 
instance, the largest Fast Swing Rate case (78.0) shows 
a studentized residual close to zero under log 
transformation (|rstudent| = 0.18), but remains 
noticeably higher under Box–Cox (|rstudent| = 1.07). 
A similar pattern holds for other extreme observations, 
suggesting that Box–Cox mitigates distortion of outlier 
influence without overcompressing them.

In contrast, the log transformation plot (right) tightly 
clusters the points along the diagonal, indicating high 
predictive accuracy. However, this comes at the cost 
of compressing the data scale, particularly diminishing 
the relative influence of extreme values. This 
compression risks oversimplifying the variability 
inherent in sports data, potentially obscuring 
meaningful insights about rare or high-variance events. 
These results align with the findings in Table 2, which 
highlight the trade-offs between transformations. While 
the log transformation achieves the best statistical fit, 
the Box-Cox transformation provides a better balance 
between predictive accuracy and interpretability, 

Figure 2. Actual vs. predicted values for fast swing rate regression models with original (untransformed), 
Box-cox transformation (MLE), and log transformation
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preserving the nuances of the data that are essential 
for meaningful analysis in sports contexts. These 
findings suggest that while transformations enhance 
prediction accuracy and model reliability, their 
applicability varies depending on the context of sports 
analytics. 

The diagnostic plots in Figure 3 illustrate the 

residuals for regression models under three different 
transformations of the dependent variable: no 
transformation (λ=1), Box-Cox transformation (λ
=0.384), and log transformation (λ=0). Each 
transformation is evaluated using two metrics: 
Residuals vs Fitted Values and Q-Q Plots of Residuals.

In the original model (λ=1), the residuals vs fitted 

Figure 3. Diagnostic Plots for Residual Analysis of the MLB dataset Across Different Transformations
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plot shows a distinct curvature and uneven spread, 
indicating violations of linearity and homoscedasticity. 
Furthermore, the Q-Q plot demonstrates significant 
deviations from the diagonal line, particularly at the 
tails, suggesting that the residuals are not normally 
distributed. These patterns highlight substantial issues 
with regression assumptions in the untransformed 
model.

The Box-Cox transformation model (λ=0.384) 
exhibits marked improvements in residual behavior. 
The residuals vs fitted plot shows a more random 
distribution of residuals around the horizontal axis, with 
reduced curvature and improved homoscedasticity. 
Additionally, the Q-Q plot indicates that the residuals 
align more closely with the diagonal line, demonstrating 
an enhanced approximation of normality. These 
improvements suggest that the Box-Cox transformation 
effectively addresses the skewness in the original data 
while preserving the relative scale of the values.

In the log-transformed model (λ=0), the residuals 
vs fitted plot shows a more consistent pattern compared 
to the untransformed model, but minor curvature 
persists, indicating slight departures from linearity. The 
Q-Q plot shows good alignment with the diagonal line 
in the center but reveals minor deviations at the tails. 
While the log transformation improves normality, its 
effect is less balanced compared to the Box-Cox 
transformation.

Overall, these diagnostic plots suggest that the 
Box-Cox transformation provides the best balance 
between improving regression assumptions and 
maintaining the interpretability of the data. The log 
transformation, while effective in normalizing the data, 
compresses the scale of extreme values, which can 
diminish the interpretability of important outliers—an 
essential consideration in sports analytics, where 

extreme values often signify meaningful insights. The 
untransformed model, by contrast, demonstrates the 
poorest fit, underscoring the necessity of transformations 
for addressing non-normality and improving model 
assumptions. These findings highlight the Box-Cox 
transformation as a practical and statistically robust 
approach for handling non-normal data in sports 
contexts.

 
LPGA Dataset

 
Table 3 presents a summary of the LPGA dataset, 

including means, standard deviations, skewness, 
kurtosis, and Shapiro-Wilk test results for the dependent 
and independent variables. The dependent variable, 
totPrize, exhibits substantial and extreme skewness 
(2.73) and kurtosis (13.04), indicating a highly right- 
skewed distribution with heavy tails. This is further 
supported by the Shapiro-Wilk test (W = 0.71, p < 
.001), which confirms a significant deviation from 
normality. In contrast, the independent variables—
driveDist, fairPct, and avePutts—demonstrate relatively 
low skewness and kurtosis, with Shapiro-Wilk test 
results indicating no significant departures from 
normality (p > .05). 

Figure 4 illustrates the distribution of the dependent 
variable (totPrize) under the three conditions: Original 
(untransformed) (λ=1), Box-Cox transformation with 
MLE-derived λ=0.10, and log transformation (λ=0). 
The log transformation appears to achieve a distribution 
closer to normality, as indicated by reduced skewness 
and kurtosis values. 

Conversely, the Box-Cox transformation achieves 
balance by reducing skewness while preserving the 
relative scale of extreme values. While the visualized 
distributions suggest improvements in normality, the 

Variables Mean Std. Skewness Kurtosis Shapiro-Wilk p-value
totPrize 522580.73 666704.20 2.73 13.04 0.71 <.001

driveDist 257.14 9.32 -0.01 2.57 0.993 0.745
fairPct 73.67 5.97 -0.08 2.86 0.995 0.885

avePutts 30.08 0.6 0.14 3.17 0.993 0.712

Table 3. Descriptive Statistics and Normality Tests for LPGA Dataset
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necessity for further regression modeling with Box-Cox 
transformation derives from its potential to better satisfy 
regression assumptions such as homoscedasticity and 
linearity, which are critical for reliable and interpretable 
models.

To further evaluate the effects of these transformations 
on regression model for the 158 observations, Table 
4 presents a detailed comparison of regression models 
for the LPGA dataset across three transformation 

methods: Original (untransformed) (λ=1), the Box-Cox 
transformation using the MLE-based optimal λ=0.10, 
and the log transformation (λ=0). The R² indicate an 
improvement in explained variance after transformation, 
with both the Box-Cox transformation and the log 
transformation achieving R²>0.4, compared to 0.2501 
for the untransformed model. However, the AIC scores 
suggest that the log-transformed model (λ=0) achieves 
the best model fit, with the lowest AIC value of 463.11, 

Figure 4. Histogram of totPrize for the LPGA Dataset

λ=1
(Original)

λ=0.10
(Box-Cox transformation)

λ=0
(log transformation)

Estimate
(p-value)

Std. 
Error

Estimate
(p-value)

Std. 
Error

Estimate
(p-value)

Std. 
Error

β0 1456669
(0.633) 3044153 26.17

(0.164) 18.69 12.73
(0.02) 5.37

β1 (driveDist) 30936
(<.001) 6281 0.272

(<.001) 0.038 0.078
(<.001) 0.01

β2 (fairPct) 44505
(<.001) 9867 0.426

(<.001) 0.059 0.123
(<.001) 0.02

β3 (avePutts) -404481
(<.001) 78132 -3.41

(<.001) 0.479 -0.978
(<.001) 0.14

R2 0.2501 0.4072 0.4085
AIC 4649.492 857.284 463.106

Relative RMSE 1.101 0.140 0.082
Note: dependent variable=totPrize. All regression coefficients are reported on the scale of the transformed 
dependent variable. The RMSE scaled by the mean of the dependent variable to allow comparison across 
transformations.

Table 4. Comparison of regression models for LPGA dataset across different transformations 
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compared to 857.28 for the Box-Cox model and 
4649.49 for the untransformed model. The relative 
RMSE values also underscore improved predictive 
accuracy after transformation. The log transformation 
achieves the lowest RMSE (0.082), followed by the 
Box-Cox transformation (0.140), while the untransformed 
model exhibits the highest RMSE (1.101).

All independent variables maintained their statistical 
significance (p < .001) and directional effects across 
all transformation methods, indicating that the 
relationships between predictors and the dependent 
variable totPrize remained stable despite adjustments 
in scale. The coefficients decreased in magnitude across 
transformations, with the largest values observed in the 
untransformed model and progressively smaller values 
in the Box-Cox and log-transformed models. However, 
this reduction in coefficient size reflects changes in 
the scale of measurement introduced by the 
transformations rather than a diminished influence of 
the predictors. The consistency of these relationships 
across models underscores the robustness of the 
findings. While the transformations adjusted the scale 
of the coefficients, their effects and significance 
remained stable. 

The relationship between actual and predicted values 
across the three transformation methods is visualized 
in Figure 5. In the first plot (original scale), the 
predicted values deviate significantly from the diagonal 
line, especially for extreme values, indicating a lack 
of model fit. In the second plot (MLE-transformed 

scale), the predicted values align more closely with 
the diagonal, reflecting an improved fit after addressing 
skewness through the Box-Cox transformation. The 
third plot (log-transformed scale) demonstrates the most 
linear alignment with the diagonal line, showing that 
the log transformation effectively regularized the scale 
of the dependent variable. However, the log 
transformation's tendency to overly diminish the 
relative impact of extreme values, particularly evident 
in sports data, may limit its interpretability in contexts 
where outliers carry critical importance. These 
visualizations reinforce the nuanced trade-offs between 
statistical performance and contextual relevance across 
transformation methods. 

The summary statistics presented in the previous 
table 4 provide a quantitative overview of the regression 
models across different transformations. However, 
these numerical summaries alone cannot fully capture 
the extent to which key regression assumptions, such 
as homoscedasticity and normality, are satisfied. To 
address this, diagnostic plots were employed to visually 
evaluate the residual patterns and normality of residuals 
for the three transformations: Original (untransformed; 
λ=1), MLE-based Box-Cox transformation (λ=0.10), 
and log transformation (λ=0) (Figure 6).

The Residuals vs Fitted plot for the untransformed 
model (λ=1) revealed a systematic pattern and uneven 
spread of residuals, indicating a violation of the 
homoscedasticity assumption. The residuals showed 
greater variance at the extremes of the fitted values, 

Figure 5. Actual vs. predicted values for LPGA totPrize models
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suggesting that the model was not adequately capturing 
the variance structure in the data. In contrast, the 
MLE-based transformation (λ=0.10) reduced the 
systematic pattern and produced a more consistent 
spread of residuals across the fitted values, reflecting 
improved homoscedasticity. The log transformation (λ
=0) also exhibited uniform residual variance, though 

the effect of extreme values was notably diminished.
The Q-Q Residuals plot for the untransformed model 

showed substantial deviations from the theoretical 
normal distribution line, particularly in the tails, 
suggesting that the residuals were heavily influenced 
by outliers. The Box-Cox transformation (λ=0.10) 
substantially reduced this deviation, bringing the 

Figure 6. Diagnostic plots for residual analysis of the LPGA dataset across different transformation
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residuals closer to normality. The log transformation 
(λ=0) achieved the highest alignment with the 
theoretical line, effectively normalizing the residuals. 
However, the strong suppression of extreme values by 
the log transformation may hinder interpretability, 
particularly in sports analytics, where outliers often 
carry significant contextual meaning.

Overall, the comparison of diagnostic plots 
demonstrates that the MLE-based transformation strikes 
a balance between improving regression assumptions 
and preserving the interpretability of extreme values. 
While the log transformation provides the highest 
degree of normality, its tendency to overly diminish 
the influence of extreme values limits its applicability 
in contexts where such values are analytically 
meaningful.

 
Discussion

 
Advancements in ICT technology have transformed 

sports data from simple frequency-based records to vast 
repositories of big data. This shift has introduced 
diverse data distributions that often deviate from 
normality, posing challenges to regression analysis—a 
widely used method for examining linear relationships 
between variables. As Cooper et al. (2007) and Vagenas 
et al. (2018) highlighted, addressing non-normality is 
critical for ensuring the reliability and interpretability 
of sport analytical outcomes. Their work demonstrates 
the importance of methodological adaptations when 
traditional assumptions about data distribution are 
violated. 

Despite the necessity of addressing non-normality, 
sports analytics has relied heavily on log transformations 
to address non-normality (Nevill & Atkinson, 1997; 
Reid et al., 2010; Atkinson & Batterham, 2012). While 
log transformations are effective in meeting statistical 
assumptions, they often compress extreme values 
excessively, potentially reducing their interpretive 
value. This limitation is critical in sports contexts where 
outliers often represent significant performance metrics 
or strategic insights. For instance, Lionel Messi’s 
record-setting 50 goals in the 2011–12 La Liga season 
reflect not just statistical anomalies but also tactical 

superiority and unique team dynamics. Over-transforming 
such data risks obscuring its analytical and contextual 
significance. Similarly, in golf, extraordinary prize 
earnings in a single tournament can indicate unique 
strategies or exceptional performances, and in baseball, 
extreme values such as high strikeout rates or 
exceptional hit distances often reflect key player 
characteristics.

Preserving the intrinsic meaning of outliers is 
essential in sports data analysis to ensure that variability 
is not overly suppressed, allowing meaningful 
interpretation within the context of performance 
evaluation. This balance between statistical rigor and 
contextual relevance is particularly critical in sports 
analytics. In line with this, Empacher et al. (2023) 
emphasized that outliers in sports data are not merely 
statistical noise but carry critical information about 
game contexts or meaningful outcomes. Suppressing 
or removing these outliers can result in the loss of 
valuable insights during data interpretation.

The findings of the current study revealed that both 
transformations enhanced model fit compared to 
untransformed models. Specifically, the Box-Cox 
transformation recorded higher R² values than the log 
transformation in baseball data and produced 
comparable R² values in golf data, demonstrating its 
effectiveness in improving explanatory power.

The coefficient of determination (R²) is calculated 
as  , where SSR represents the 
residual sum of squares, and SST represents the total 
sum of squares. The finding that the Box-Cox 
transformation recorded higher or similar R² values 
suggests its ability to flexibly adjust data distributions 
while effectively capturing data variability within the 
model, minimizing distortion. This highlights its 
advantage over the log transformation, which may 
compress data excessively, potentially failing to reflect 
some variability in the model.

In terms of model simplicity, the log transformation 
achieved the lowest AIC among all models. AIC, 
calculated as , where L 
represents the maximum likelihood and k the number 
of parameters, assesses the balance between model 
complexity and explanatory power. The lower AIC of 
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the log-transformed model suggests that it effectively 
normalized the data while maintaining a simple 
structure. However, this simplicity may come at the 
expense of reducing the contribution of outliers, as 
observed in prior research (Hoaglin & Velleman, 1995; 
Baesens et al., 2009; Khakifirooz et al., 2021), which 
cautioned that log transformations could diminish the 
interpretability of critical extreme values in data. This 
aligns with the present study’s findings, emphasizing 
the need for careful consideration when applying log 
transformations.

The analysis of predictive accuracy, as measured 
by RMSE, provided further insights into the trade-offs 
between transformation methods. While empirical 
results indicate that the log transformation achieved the 
lowest RMSE, suggesting reduced prediction errors, 
this finding requires a nuanced interpretation within 
the context of sports data. The lower RMSE in 
log-transformed models often stems from the aggressive 
compression of informative outliers—such as superstar 
athletes or extreme performance cases—which can 
create a statistical illusion of higher predictive accuracy 
by artificially minimizing residual variance.

As observed in our results, the extreme case of a 
78.0 Fast Swing Rate yielded a studentized residual 
close to zero under log transformation (|rstudent| = 
0.18), whereas it remained meaningfully higher under 
Box–Cox (|rstudent| = 1.07). This disparity, also 
illustrated in the “Actual vs Predicted” plots (Figures 
2 and 5), indicates that the log transformation squashes 
unique performance signals to achieve tighter clustering. 
In contrast, the Box-Cox transformation mitigates the 
distortion of outlier influence without overcompressing 
them, prioritizing contextual integrity over the mere 
minimization of numerical error. Therefore, despite the 
slightly higher RMSE, the Box-Cox transformation 
serves as a more valid alternative for sports analytics 
by preserving the variability that defines elite 
performance.

Residual and Q-Q plots (Figures 3 and 6) reinforced 
these findings. The original models showed significant 
deviations from normality and heteroscedasticity, while 
the Box-Cox transformation improved these assumptions 
without diminishing the relative importance of extreme 

values. Although the log transformation further 
enhanced the normality of residuals, its compression 
of data raises concerns about potential information loss.

Beyond statistical validation, the Box-Cox 
transformed models offer actionable insights for 
practitioners in baseball and golf. For the MLB Fast 
Swing Rate model, the results indicate that while 
Average Exit Velocity ( ) is a significant 
predictor, Average Swing Length ( ) exerts an 
even more dominant positive influence. This suggests 
that achieving a high swing rate is not merely a function 
of raw power; rather, it requires a swing mechanics 
that ensures a sufficient acceleration zone (swing 
length) before impact. Furthermore, the relatively small 
coefficient for Age (  implies that elite hitters 
may mitigate age-related declines in swing speed 
through disciplined physical conditioning and technical 
adjustments.

In the LPGA total prize money (totPrize) model, 
the findings underscore the paramount importance of 
short-game proficiency. Average Putts (avePutts, 

) emerged as the most powerful negative 
predictor, meaning that reducing even a single putt per 
round has a far greater relative impact on earnings than 
increasing driving distance. Additionally, the positive 
influence of Fairway Percentage (fairPct, ) 
compared to Driving Distance (driveDist, ) 
suggests that a strategy prioritizing stability and 
accuracy may be more economically efficient for 
professional golfers than an aggressive focus on 
distance alone. By utilizing the Box-Cox transformation, 
these models preserve the impact of top-tier performers 
while providing a reliable framework for identifying 
these key performance drivers.

These findings underscore the critical balance 
required in selecting transformation methods for sports 
data analysis. While the log transformation effectively 
normalizes data distributions and optimizes regression 
assumptions, its tendency to compress extreme values 
can limit its interpretive value in contexts where such 
values are essential for understanding performance and 
strategy. In contrast, the Box-Cox transformation 
provides a robust alternative by addressing skewness 
and improving normality without excessively 
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diminishing the impact of outliers. This approach not 
only enhances the explanatory power of regression 
models but also preserves the variability and contextual 
significance of extreme values, which are often pivotal 
in sports analytics.

In sports contexts, outliers frequently embody 
extraordinary performances, unique tactical decisions, 
or game-defining moments, making their accurate 
representation critical for meaningful analysis. By 
maintaining the integrity of these extreme values, the 
Box-Cox transformation aligns better with the dual 
demands of statistical rigor and practical applicability. 
As demonstrated in this study, this balance allows for 
a more nuanced interpretation of sports data, ensuring 
that analytical outcomes remain relevant and actionable 
within the competitive and strategic landscapes of 
sports.

 
Limitations & Future Directions

 
While this study demonstrates the utility of Box-Cox 

and log transformations in addressing the non-normality 
of sports data, several limitations and areas for 
improvement should be acknowledged. First, both 
transformations alter the original scale of the data, 
necessitating back-transformation for interpretation and 
estimation. This process can introduce re-transformation 
bias, leading to discrepancies between predictions made 
on the transformed scale and their counterparts on the 
original scale (Manning, 1998). Specifically, the mean 
values calculated in transformed and back-transformed 
data may differ, particularly for datasets with highly 
skewed distributions or non-normal residuals (Asuero 
& Bueno, 2011). For instance, in sports contexts, the 
bias may obscure subtle yet meaningful variations in 
player performance metrics when interpreting back- 
transformed results. While this issue is less problematic 
for symmetric data with minimal outliers and 
homoscedastic residuals, such conditions are rare in 
sports data, where extreme values often hold critical 
contextual significance. Researchers must carefully 
evaluate these trade-offs, balancing statistical rigor with 
the interpretability of results, particularly in datasets 
where outliers represent meaningful performance 

metrics.
Second, the Box-Cox transformation is limited to 

positive data values. Although the datasets in this study 
contained only positive dependent variables, datasets 
with negative values require an Offset Addition 
approach. This method involves adding a constant to 
all data points, shifting the minimum value above zero 
to enable the transformation (Huang et al., 2023). 
However, the choice of offset is critical. An excessively 
large or small constant can distort the original data 
distribution or obscure meaningful patterns (Riani et 
al., 2023). Researchers must carefully balance the need 
for transformation with preserving the interpretive 
integrity of the data.

Third, this study focused on datasets from baseball 
and golf, sports where ICT technologies are extensively 
used for performance tracking. These datasets provided 
clear examples of non-normal distributions. However, 
sports with high real-time variability, such as soccer 
or basketball, may pose unique challenges due to the 
dynamic nature of play. For instance, Rein and 
Memmert (2016) highlight that temporal dependencies 
in soccer datasets complicate traditional analytical 
approaches, emphasizing the need for adaptable 
transformation methods capable of addressing the 
dynamic strategies, situational contexts in such sports. 
Future studies should explore the applicability of 
transformation methods in these contexts, taking into 
account factors such as temporal variability and 
game-specific situational dynamics. 

Fourth, it is important to note that the findings of 
this study are most applicable to positive continuous 
variables, such as swing rates, driving distances, and 
prize money. While Box-Cox and log transformations 
work well for these types of data, other common sports 
metrics—such as counts (e.g., goals or fouls) or binary 
outcomes (e.g., win/loss)—might require different 
analytical methods. For these variables, Generalized 
Linear Models (GLMs) could be better suited than a 
standard linear regression with transformations. Future 
research should compare these different models to 
identify the most robust approach for various types of 
sports data.

Finally, while this study highlights the strengths of 
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the Box-Cox and log transformations, alternative 
methods warrant exploration. For example, Yeo- 
Johnson transformations handle both positive and 
negative values without requiring offset addition, 
offering flexibility for datasets with mixed data ranges. 
Moreover, machine learning-based normalization 
techniques, which adapt dynamically to complex data 
characteristics, hold promise for addressing non- 
normality in modern sports analytics. By integrating 
these methods and expanding the scope of analysis to 
include diverse sports and contexts, future research can 
enhance the precision, interpretability, and practical 
utility of transformation approaches in sports analytics.
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