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Abstract

This study aims to represent a more preferential bilateral movement template by introducing empirical 

measures of cluster (Experiment 1) and fixed-point shift (Experiment 2) during the bimanual 

coordination. We showed how the phase dynamics can be calculated using the cluster method (analysis 

1). Relatively stable patterns defined by the cluster process were employed for the fixed-point shift 

calculation to compare three joint oscillations (wrist, elbow, and shoulder; Analysis 2). The analysis 

revealed that (i) anti-phase coordination was less stable underlying the cluster phase and amplitude 

analysis; a significance that was mainly driven by higher radial variability. (ii) The three joint couplings 

and noise oscillations showed that they were wider for the distal (wrist) than the proximal (shoulder) 

areas. (iii) Repetition with one joint (i.e., wrist) may be significantly associated with trial effects; thus, 

using data of pick only one joint (wrist) but collecting data from different (three) joints seems more 

reliable to be a typical dependent variable for the trial effect. Observations and suggestions derived from 

this aspect represent how the bilateral movement calculation methods can be applied to measure the type 

of coordination stability eliminating of the learning effect stemming from numerous trials. 

Key words: Bi-manual coordination, phase dynamic, expectation value, cluster methods, 
     fixed-point shift

1

Bilateral movement has been extensively 

investigated in movement science (Frank & 

Richardson, 2010). Such a characteristic (i.e., 

synchrony) including a detailed understanding of its 

significant implications for symmetric patterns (Mo et 

al., 2020) and elementary coordination has been 

considered a fundamental means of evaluating the 

stability of one’s self with others (Paladino et al., 

2010). In particular, measurements have played an 
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important role in identifying collective variables and 

their dynamics that govern the formation and change 

of patterns in a variety of coordination tasks (Walter 

& Swinnen, 1992; Kenville et al., 2020). Many studies 

have accounted for the relative stability between 

in-phase (synchronized movements using homologous 

muscles of the limbs) and anti-phase (alternating 

movements, 180° out of phase) (Pikovsky et al., 2003). 

Background 

Mutuality between the relative oscillators arises from 

the insight of perception-action coupling perspective 

with work on the coordination problem (Bernstein, 
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1967), and has become a major tenet in the physical 

sciences (Kugler et al., 1980; Shaw & Turvey, 1981). 

Evidently, when adopting this view, phase synchrony 

is a traditional paradigm in behavioral dynamics 

(Warren, 2006). In particular, a bi-manual 1:1 frequency 

locking in-phase and anti-phase pendulum can represent 

a wide range of control theories (Turvey, 1990; Fultot, 

2020).

θ θ ≈  (1)

θ θ ≈ π (2)

In this equation, the phase difference, 

θ θ ≈ , denotes a condition of nearly 

synchronized in-phase and  θ θ ≈ π indicates 

this in an anti-phase. The observed relative phase or 

phase relation (ϕ) between two oscillators at ϕ≈ deg 

(in-phase) and ϕ≈ deg (anti-phase) have been 

modeled as point attractors in our limb system, as they 

are purely stable patterns (Pikovsky et al., 2003). 

Several studies on the 1:1 frequency locking of the 

left-and-right-hand phase, defined as ϕ  θ  θ: 
the difference between the left (L) and right (R) phase 

angles (ϕ), have led to the identification of important 

invariant human system features (Kelso, 1984). 

ϕ α cosϕ  cosϕ (3)

In this equation, ϕ is the phase angle of the individual 

oscillator. In addition, α and  are coefficients that 

denote the strength of the coupling between the two 

oscillators. A relative 1:1 frequency-locked coordination 

phase [ϕ] is determined by the differences between 

the two component oscillators’ continuous phase angle 

[ α cosϕ  cosϕ]; the stability of the point 

attractor can be varied by varying the pendulum’s 

dimensions (Kugler & Turvey, 1988). This function 

indicates that the minima of the potential are located 

at ϕ = 0, and ϕ ±π (Haken et al., 1985). 

Gap statement 

Motivation for the research question was derived from 

the above assumptions and various work given the 

following model: function can be estimated in how the 

potential will change in shape as the other measurements. 

Although the magnitude (or stability) of synchrony can 

differ across different conditions (Schaffert et al., 2019), 

the most used quantifications are the spatiotemporal and 

neuronal performance that occurs between the movements 

of the limbs (Mechsner et al., 2001). Indeed, there is a 

lack of verified quantification of the magnitude and 

stability of systems that can occur between different 

categories (Purpura et al., 2017), even though such 

assumptions play an important functional role in the 

assembly of different oscillations (Kelso et al., 1991). 

Cluster methods and the fixed-point shift process can be 

integrated with methodological techniques that allow for 

Left = synchronized almost in-phase, with a phase difference   ≈ and in the anti-phase condition = middle, when 
 ≈π, or it does not match the _initial input 0.5, _initial input 0.0 = right.

Figure 1. Synchronous diagrams of the possible point attractors
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modeling of data (Chen & Huang, 2017), providing the 

ability to look at the exact level of patterns as well as 

different constraints (Soechting & Lacquaniti, 1981). 

Particularly, a homogeneous characteristic (or data) can 

be detected from heterogeneous observations by clustering 

data that is unlabelled and without a defined variable pool 

(Frank & Richardson, 2010; Lin et al., 2019). Further, 

a locally stable or ultimate compact state (attractor) can 

be defined by the fixed point shift process (Ren et al., 

2013; Park, 2019). These applications with constraints 

may be imposed on the redundant degrees of freedom 

problem (Bernstein, 1967) embracing purely stable 

patterns.

Purpose  

In this study, therefore, we address these questions by 

adapting and testing cluster and fixed-point shift 

techniques (Frank & Richardson, 2010). We propose that 

the nature of this method is called radial calculation 

(Richardson et al., 2012), primarily suggesting which 

phase is more stable as a particularly well-suited physical 

model. In addition, we further expand such a functional 

linkage into a topological constraint that can be used to 

examine any other phase of synchronization of different 

bodies of topological systems (Shih et al., 2019). 

Theoretical Value 

The above work designed on a systemic investigation 

may elicit degree of freedom issues to deal with 

task-specific characteristics (Park, 2020). This will 

allow us to estimate a useful reference for system 

stability coordination tasks in which this functional 

pattern can be applied to all human movements, 

muscles, and even neural networks.

Methods

Participants

For this study, bimanual coordination embedding 

synchrony context data were collected from students (n 

= 24) at the University of Connecticut (n = 16) and 

Seoul National University (n = 8). They participated 

in this study to fulfill their course requirements. None 

of the participants were compensated for volunteering. 

All participants were not aware of the study’s purpose 

and had not previously participated in an experiment 

on rhythmic or synchrony movement coordination. They 

participated in different experiments in the three groups 

and were confirmed to have no physical or 

psychological problems. All of them provided written 

informed consent for the study, approved by the local 

ethics committee (SNUIRB No.1509/002-002). The 

study conformed to the ethical standards of the 1964 

Declaration of Helsinki.

Experimental design

The present experiment was designed to verify 

whether a more stable bimanual synchrony variable 

exists between phases and anatomies. Although the 

in-phase on the wrist joint is properly used compared 

to other possible bimanual pendulums (Kelso, 1984; 

Turvey, 1990), whether this value is representative of 

the overall characteristics of a system must be assessed. 

Moreover, repeating the assessment for only one 

position under several different conditions with many 

trials is likely to be associated with learning (or fatigue) 

effects. The collected data were analyzed to compare 

different characteristics between phases (experiment 1: 

in-phase and anti-phase) as well as different limb joint 

performances (experiment 2: wrist, elbow, and 

shoulder). 

Apparatus and procedure

Bimanual coordination without detuning was 

performed while each subject was seated in a chair 

holding a pendulum vertically without occluding their 

vision. The pendulums used here were two standard 

wooden rods (85 g, 1 m in length, 1.2 cm in diameter) 

with DC potentiometers attached. A 200 g weight was 
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positioned 30 cm from the bottom of the rods. Each 

participant was asked to grasp the pendulum firmly 60 

cm from the bottom so that the pendulum would not 

slip out of their hands; they were also asked not to 

rotate their finger joints. Their forearms were fixed 

voluntarily so that the pendulum motion was restricted 

to the sagittal parallel plane and the joint vertical axes 

(i.e., each oscillation pertained to only one joint, with 

the other joints being held immobile) (see Appendix 

1). The appenidx (1) shows experimental sessions that 

were tapped into the ongoing bimanual coordination, 

focusing on its design structure (each experiment 

section includes more detail about the apparatus and 

procedures).

Experiment 1

As shown in the Introduction, because many 

ambiguities still exist between the purely stable phases 

[ϕ≈ deg (in-phase), or ϕ≈ deg (anti-phase)], we 

observed the elementary coordination composed of 

different measurements as well as stability, which may 

differ between the variables (Soechting et al., 1986). Thus, 

for the experiment, the sessions were divided into two 

conditions (in-phase and anti-phase). Each trial block 

lasted for 1 min, with a rest of 5 min. During the first 

session, participants received instructions about the 

preferred pendulum movements to establish in the in-phase 

and anti-phase 1:1 frequency locking at a 1.21 s 

metronome beat (this period was chosen because it 

corresponded to the natural period of the pendulum system 

without concern over amplitude or frequency; Amazeen 

et al., 1997). 

In the different phase sessions (two levels), the 

participants received instructions about the preferred 

pendulum, but with the additional instruction of keeping 

different joints (elbow and shoulder) voluntarily fixed. 

Some experience was provided to help avoid difficulty 

in complying with the session requirements by giving 

instruction beforehand. During the actual trial, no 

feedback was given, and the participants were not to 

report, except when a problem arose (the data from that 

problem trial were not analyzed, and the trial was later 

repeated). Two different oscillation phases were used 

in a random order. 

Analysis  

Expectation values 

These are (real) numbers that are computed from a 

continuous mathematical model. It can be an infinitely 

large dataset (i.e., pendulum = ), probability 

distribution or probability density describing certain 

aspects of a distribution. For example, Mean is the 

center of a distribution of values: 

∈     
 ∑     ∈   (4)

and Variance is the variability in the values of the 

distribution:

 









  

  
∈  
       

 

                          (5)

Group
Participants 

(N)
Body joint Trials

Task/rest 
(min)

G1 8

Wrist
(in-phase)

6 1 m / 5 m

Wrist
(anti-phase)

6 1 m / 5 m

Note. Data collection for the phase test: Group one = 8 
participants, 6 trials, at wrist with in-phase (total dataset = 
48), wrist with anti-phase (total dataset = 48). Duration of 
each trial is 1 minute, with 5-minute rest intervals between 
trials.

Table 1. Data collection for experiment 1: two conditions, 

eight participants, six trials at each point
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This is intuitive if we think about our empirical 

variable. We assume, here, that the variable we are 

interested in is X. The moments can then be the expected 

values of X: E(X), E(X2), E(X3), and so on. 

Mean of the first moment: 

 
 ∑  ⋯   →∞ (6)

and that of the nth moment: 

  
 
 



 

 →∞ (7)

For example, when we practice with moment values, 

the first moment of the mean is defined as 


→∞
lim   ∑  ⋯   (8)

where   are the realizations (i.e., statistically 

independent scores) from a statistical ensemble. The 

average value can be interpreted as the sample (i.e., 

relative phase) average. Figure 3 below illustrates the 

limiting process. It shows that sample means me taken 

from a normal distribution with parameter μ = 7 and 

σ = 1 for samples of increasing size. The sample sizes 

used in the figure are shown in below. 

Given the function of the variables X: ɡ(X), we can 

assume which function value we would expect to 

observe on average (expectation value) with a notation 

E[ɡ(X)]. For example, first moment (mean value): ɡ(X) 

= X → m=E[X]=<X>, given a function ɡ of the process 

X: ɡ(X), we calculate E[ɡ(X)] as follows:

   
    …  

→∞

  

                        (9)     

Thus, the notation of the expectation value of 

function ɡ; 

  〈〉
→∞
lim ∑  ⋯   

     

       (10)  

  

where the equations    represent measures of 

central tendency and variability for continuous 

variables defined on a real line pendulum movement 

dynamics.

Cluster Methods 

Now, let us take the expectation values for the cluster 

Figure 2. A normal distribution. The parameters are 

µ = mean and σ = variance (width given by σ). 

Prob. = probability, a.u. = arbitrary unit
Figure 3. Statistical representation of the expectation 

function. The figure suggests that in the limiting case when 

N goes to infinity, the sample mean converges to the 

value 7 (i.e., we have m = μ = 7).
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phase (θ) and cluster amplitude () of circular statistics 

(Vancleef et al., 2016) because they can also be applied 

under certain circumstances to periodic variables (this 

technique is to create homogeneous groups (or data) out 

of heterogeneous observations where data is unlabelled 

and without a defined variable pool; Lin et al., 2019; 

Richardson et al., 2012). The cluster phase describes the 

center of the angle distribution. For instance, if the mean 

relative phase between two limbs is zero, they are 

perfectly in-phase with one another. The cluster 

amplitude can assume values between 0 and 1. 

Specifically, low values indicate high variability, whereas 

high values indicate low variability. For  = 1, all the 

angles have the same value. The cluster amplitude and 

cluster phase are defined by the expectation value of a 

complex function (Richardson et al., 2012).

   exp      (11)

                                     (12)

             (13)

The complex function is the exponential function of 

, where  is the imaginary unit [i.e., the square root 

of –1 (   )]. The amplitude  is the absolute 

value of the complex number , and the phase is the 

angle of the complex number . We now describe how 

to determine the cluster amplitude and phase using 

real-valued expectation values. The cluster amplitude 

and cluster phase can be computed from the expectation 

values of the sine and cosine functions as follows: 

   cos                   (14.1)

   sin                    (14.2)

                       (14.3)

tanθ 


                    (14.4)

The last relation must be inverted using the arctan 

function to obtain the cluster phase. To obtain the cluster 

phase and amplitude from the data, we replaced the two 

expectation values (, ) with the respective averages.

Results

We determined the cluster amplitudes  and phases  

 for the data sets G1, phase data A and G1 phase data 

B. For each data set, we computed the amplitude and cluster 

phase and compared the results obtained in Table 2.

The cluster amplitude of the datasets seems to be 

variable, and the cluster phase appears to be anti  and 

in-phase. Regarding the data, the G1_A data looked 

anti-phase as theta was 179 (left side of Figure 4), 

whereas the G1_B data had a theta of –.57 (in-phase; 

right side of Figure 4). The results showed that motor 

performance varied given the shift in and the of these 

behavioral variables. The main observation was that the 

in-phase was significantly associated with stability, 

while the other condition (anti-phase) was lower. 

Moreover, there was a significance, as the cluster 

amplitude from an anti-phase was significantly wider: 

F(2, 47) = 4656.999, (p < 0.001). 

Discussion

Formation and retention refer to propriospecific 

Measure
Phasedata_

G1_A
Phasedata_G1_B

Averaged () 0.9831 0.9903

Averaged (θ) 179.2475 -0.5763

Note. Expectation values of the cluster phase and cluster 
amplitude of circular statistics. Data collection for the phase 
test: Group one = 8 participants, 6 trials, at wrist with 
in-phase (total dataset = 48), wrist with anti-phase (total 
dataset = 48). 

Table 2. Averaged production from the values of the 

cluster methods 
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information about the states of the muscular-articular 

links, and these patterns are constrained by the dynamic 

criteria of stability patterns (Kelso, 1997; Park et al., 

2015). Specifically, let us consider a qualitative physical 

system such as stiffness, damping, and position over 

time in a dynamic mass spring system, as given. 

 ″ ′            (15)

Here,  is the mass,  is the friction, and  denotes 

the stiffness. The variable  is time, χ denotes the 

position, χ′ is the velocity, and χ″ represents the 

acceleration. In general, because damping is produced 

by a process that dissipates the energy stored in the 

oscillations, the interplay between input and damping 

approaches a stationary fixed point in the long-time limit. 

″ ′              (16)

Such systems possess a static equilibrium point, which 

is called a point attractor (Kugler et al., 1980). The 

property of this dynamic has been applied not only to 

a physical system but also to descriptions of the human 

neuromuscular level (Kay et al., 1987). This function 

involves an investigation of the intact movement of a 

limb oscillator in terms of muscle–joint kinematic 

variations (kinematic position, velocity, and acceleration) 

over time (Park, 2018). As it is, when we are asked to 

swing two limbs comfortably, it can be characterized by 

the pendulum’s dimension (Kugler & Turvey, 1988; 

Turvey, 1990), simplifying the point attractor while 

restricting it to certain domains of phase space. 

In the observed relative rhythmic segment patterns, 

some studies have reported that the in-phase ϕ   
condition is more stable than the anti-phase ϕ  π 

condition (Schmidt et al., 1998; Li et al., 2019), and 

other studies have highlighted that this is not always the 

case in certain conditions and analyses (Shih et al., 

2019). In particular, the stability of coordination has been 

leaning toward in-phase movements (Carson & Kelso, 

2004), although such coordination is influenced by a 

constraint. This investigation specifically considers these 

perspectives to determine a more reliable characteristic 

of different phases, based on which one would be better 

as the experimental dependent variable, to illustrate the 

different phase effects between the two conditions. We 

confirmed that while the anti-phase pattern entailed 

larger instability with the cluster methods and structure 

(Cattaert et al., 1999), in-phase was more associated with 

a preference for homologous activations. 

Experiment 2

From the previous investigation, it is clear that the 

Left = synchronized almost anti-phase by Phasedata_G1_A [Averaged () = 0.9831, Averaged (θ) = 179.2475], Right = 

synchronized almost in-phase by Phasedata_G1_B [Averaged () = 0.9903, Averaged (θ) = -0.5763]
(See the Appendix 2 for the programming procedures).

Figure 4. Synchronous diagrams of the cluster methods
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in-phase is more stable than the anti-phase leading to 

the identification of important invariant system features 

(Haken et al., 1985). With respect to the reconfirmation 

based on cluster methods, the present experiment was 

designed to find a relevant in-phase bimanual synchrony 

variable by using another fundamental technique 

(intensively defined as a prototype modeling for 

contexttual constraints invetigation (i.e., symmetry, 

handedness, and topological attractor; Pikovsky et al., 

2003; Shea et al., 2016; Treffner & Turvey, 1996;)), and 

the collected data were calculated to compare different 

characteristics between one joint performance and 

several different joint performances (Bashkirtseva et al., 

2021). In particular, although the wrist point is properly 

used compared to other possible bimanual pendulum 

areas, such as the elbow or shoulder, whether this value 

was representative of the overall characteristics of a 

system had to be assessed (Bossel, 2002). Moreover, 

repeated assessments for only one position under several 

different conditions and several trials is likely to be 

associated with learning (or fatigue) effects (Gonzalez 

et al., 2011). To observe this, data were collected from 

16 participants (at the University of Connecticut) (M=10, 

F=6, age 22 ± 3) to compare one typical anatomical 

position (wrist: M=5, F=3) and several different joint 

positions (wrist, elbow, and shoulder: M=5, F=3). 

The sessions were divided into two conditions (one 

joint = Group 2, and different joint = Group 3). Each 

trial block lasted for 1 min with a rest for 5 min. 

During the one-joint session (wrist), participants 

received instructions about the preferred pendulum 

movements to establish in-phase 1:1 frequency locking 

at a 1.21 s metronome beat (this period was chosen 

because it corresponded to the natural period of the 

pendulum system: Amazeen et al., 1997) without 

concern over amplitude or frequency. In the different 

joint sessions (wrist, elbow, and shoulder), the 

participants received instructions about the preferred 

pendulum, as in the single-joint session, but with the 

additional instruction of keeping different joints 

voluntarily fixed. Some experience was provided to 

help avoid difficulty in complying with the session 

requirements by giving instruction beforehand. During 

the actual trial, no feedback was given, and the 

participants were not to report, except when a problem 

arose. If the participants accidentally moved a joint 

that was supposed to be fixed voluntarily, the data from 

that trial were not analyzed, and the trial was later 

repeated. Three different oscillation joints were used 

in a random order. 

Analysis 

Calculating Relative Phase Coordination 

Corresponding to the previously introduced model 

(see Background), the mechanism of oscillation on two 

different (left pendulum and right pendulum), but nearly 

identical, process phases was defined by the following 

dynamic:

ϕ  θ  θ           (17)

Here, ϕ is the phase of the strength between the left 

(θ) and right hand (θ). The degree of relative phases 

(0° ~ 180°) depends on the difference between the two 

oscillators. If each θ is defined as a sine function as 

follows: 

Group
Participants 

(N)
Body joint Trials

Task/rest 
(min)

G2 8 Wrist 6 1 m / 5 m

G3 8
Wrist
Elbow

Shoulder

2
2
2

1 m / 5 m
1 m / 5 m
1 m / 5 m

Note. Data collection for experiment 2: Group 2 = 8 
participants 6 trials at wrist (total data set = 48); and Group 
3 = 8 participants, 3 joints, and 2 trials at each joint with 
random sequences (total data set = 48). Duration of each 
trial is 1 minute and 5-minute rest interval between trials.

Table 3. Data collection for experiment 2: two conditions, 

16 participants, six (two) trials at each point
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θ  ω  
α sinθ  θ         (18.1)

θ  ω  
α sinθ  θ         (18.2)

the logic can simply be rewritten to ϕ as the same 

dynamic function.

θ  θ  ϕ          (19)

Then, each   can be specified as the following 

equation:

ϕ  θ  θ  ω  ω ∆ω ϕ
 ϕ

         
                                       (20)

Calculating fixed-point shift Dynamics 

To realize the relative phase-time series of both hands 

as calculated with the above logic, first, data from both 

hands were divided into left and right components. Next, 

the separated data were collapsed as each peak point 

(left_peaks and right_peaks) in terms of a one-dimensional 

dataset, and these peak points were defined with each 

vector value to link each peak point according to the time 

series. Finally, these sets were analysed using a discrete 

relative phase formula, as follows:

ϕ  πmax   max
max  max

          (21)

In this equation, max is the time of the ‘’th 

maximum extension of limb L, and ϕ is the relative 

phase for cycle  . The phase of relativity time series for 

both oscillators was established using a direct function 

of the data analysis program. Based on these procedures, 

the standard location and relative stability of the stable 

phase relationships or fixed points were measured (the 

fixed point of a system is an attractor whether it is a 

locally compact space or an ultimate compact space; Ren 

et al., 2013; Park, 2019). In these calculations, the 

locations of the fixed points were indexed as the shift 

of the mean relative phase from an intended phase.

ϕ  ϕ                   (22)

Here, ϕ is the intended phase of the point shift as 

a function of the degree of frequency competition (Δω 

= 0). Although the experimental setting was designed 

with a 1:1 frequency and phase locking with a 

metronome beat, the mean degree (ϕ ϕ) was 

considered in which the importance of the degree of 

closeness between the in-phase (0, 360 degree) or 

anti-phase (± 180 degree) condition with regard to 

detecting the different conditional phase relationships 

was represented. For the deviation value, it was 

necessary to check the datasets for the degree (converted 

from radian values) of phase variability with the 

following equation:

ϕ                               (23)

The locations of the fixed points are indexed as the 

deviation or shift of the mean relative phase ϕ from the 

intended phase ϕ of 0. The stability here is inversely related 

to the variability with which ϕ is produced, as indexed 

by the standard deviation of relative phase ϕ. These 

simulations with the observations reflect that the fixed-point 

shift can be calculated using the deviation of the average 

relative phase from the intended phase (ϕ  ϕ), and 

the variability can be calculated as the standard deviation 

of the relative phase (ϕ). This provides us with a basic 

tool for measuring the system’s ability to remain stable in 

some circumstances (Amazeen, et al., 1997; Amazeen, et 

al., 1998; Treffner & Turvey, 1996). 

r 

x 

v  
θ ω→θ ω θ
θ  ω  θ ω θθ  ω  θ ω θ
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Results

Participants were divided into different experimental 

groups for the following two reasons: (a) although the 

wrist point is commonly considered compared to other 

possible bimanual pendulum areas, such as the elbow and 

the shoulder, representing this value as the overall 

characteristic of the system had to be confirmed. 

Moreover, (b) there was uncertainty that repeating only 

one position under several different conditions through 

a number of trials can be associated with learning (or 

fatigue) effects. This investigation specifically considered 

these differences to determine the fundamental 

characteristics of different anatomical joints.

Figure 5 illustrates the average stability of each joint 

for the wrist, elbow, and shoulder. Topological 

asymmetry, couplings, and statistics are reflected, 

showing that they are significantly wider for the distal 

(wrist) than the proximal (shoulder) with different joint 

parameters (Figure 6). Specifically, the results showed 

that coordination performance varied with different 

anatomical parts given the fixed-point shift 

[ϕ  ϕ] and the standard deviation of the relative 

phase [ϕ] of the three behavioral variables. This 

indicates that the topology Pearson correlation R = .5 

(p = 0.00041)]. There was hierarchical significance, 

as the [ϕ  ϕ] and the [ϕ] were significantly 

wider for distal anatomy: F (2, 47) = 4656.999, (p 

< 0.001). 

Next, the data were separated into phases for different 

conditions according to the trial. The data were then 

analyzed using two values regarding which one would 

be better as the experimental dependent variable to 

illustrate the different trial effects between the two 

conditions of the one joint (wrist) or the position of 

different joints (wrist, elbow, and shoulder).

The results showed that motor performance varied with 

different anatomical parts given the fixed-point shift 

[ϕ  ϕ] and the standard deviation of the 

Wrist Elbow Shoulder

Upper left = wrist, upper middle = elbow, upper right = shoulder (shaded sector arear means pendulum angle degree and 
variance). The figure on the bottom denotes the frequency range of the amplitude (horizontal axis = time series and vertical 
axis = displacement, with the upper figure denoting the left-hand side and the bottom denoting the right-had side). Note: 
When it comes to these circular functions, we used 2π as a default (0) and calculated x using (180 degree*x/pi). In the 
above sample case (participant 1), the degree represents the closeness to in phase (0 degree, or 360 degree) or anti phase 
(±180 degree) and variance (distribution) of each topological relative phase.

Figure 5. Circular representation of the different joint coupled oscillations
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relative phase [ϕ] of these three behavioral 

variables. The important fact from these observations is 

that repetition with one joint may be significantly 

associated with increased stability, akin to trial effects (see 

the left plot of Figure 7) [Pearson Correlation R = .284 

(p < 0.025)], while the other condition (different topology) 

did not have a significant effect according to the trial (see 

the middle plot of Figure 7) [Pearson Correlation R = 

.110 (p < 0.236)]. However, there was hierarchical 

significance, as the mean relative phase from the 

[ϕ  ϕ] and the [ϕ] was significantly 

wider for distal anatomy (see the right plot of Figure 7): 

F (2, 47) = 4656.999, η = 8.077 (p < 0.001). 

Discussion

Inquiry into the possibility of relating 

perception-action to dynamics began in the 1970s with 

the problem of coordination: could a principled 

dynamical account of fundamental rhythmic 

Wrist Elbow Shoulder

It denotes all participant’s range of oscillations, we used T score (Τσ
χμ

) as a different noise value (left: wrist 

= 61.476, middle: elbow = 51.419, right: shoulder = 37.105), and same coupling strength = 1 (center line at each scope). 
X_Y plots illustrate the relationship between each oscillator’s X-axis and Y-axis patterns [left: wrist, middle: elbow, right: 
shoulder] visualizing two-dimensional noise

Figure 6. Coupling strength of the different joint coupled oscillations

Left = Repeated measure of the wrist according to the trial; standard deviation of the relative phase, ϕ. Middle = 
Repeated measure of the different joint (wrist, elbow, and shoulder) according to the trial; standard deviation of relative 
phase, ϕ. Right = Deviation of the phase for the different joint orientation (1 = wrist, 2 = elbow, 3 = shoulder); 

standard deviation of relative phase, ϕ]. Z is the standard score of the observed raw score χ (formula: Ζσ
χμ

) 

(See the Appendix 3 for the statistical procedures). 

Figure 7. In-phases for the different conditions according to the trial



Cluster And Fixed-Point Shift Technique 41

capabilities be given involving multiple joints, scores 

of muscles, and millions of cells? Efforts to address 

this question invoked the concepts and tools of 

nonlinear dynamics (Kugler & Turvey, 1987). We 

suggested a method of data collection (including trial 

effects; recommended to create as a relevant dependent 

variable) that can be used to measure the internal source 

of stability (Frank & Richardson, 2010; Shih et al., 

2019; Gruevski et al., 2017). In particular, collecting 

different values for three joints but using only wrist 

data for biological characterization was determined for 

the following reasons: (a) although there was a 

significant learning effect when the participants 

undertook a task repeatedly with only the wrist point, 

it led to significant typicality compared to the other 

two (elbow and shoulder) data sets. As it is, to 

overcome the learning (or fatigue) effects, data were 

collected for three joints randomly but used only the 

wrist data. (b) Even though investigations could use 

combined data that included all three different motor 

positions, representing the combined data as the 

characteristic of a biological system appears to remove 

the important value of representativeness, as this 

combination likely has too many variables to manage. 

Moreover, (c) there was an expectation that collecting 

different motor scales but using concretely represented 

data (i.e., wrist position) may meet both requirements 

of typicality as a well-defined system characteristic 

eliminating the learning effect stemming from 

numerous trials. This implies a demonstration of the 

question of whether data from only one condition in 

many trials can be represented as a well-defined 

characteristic of the internal source of a system 

(Thomaz et al., 2017).

Conclusions and Practical 
Applications

The principal features of self-organizing are 

multi-stable, depending on system dynamics, and such 

characteristics have been reported in many coordinative 

structures (Kelso, 1997). Here, the observed features can 

be modeled as attractors of the order parameter (Schoner 

et al., 1986) identified as the most reliable recruitment 

of the dependent variable. In particular, we presented 

and tested a method proposed by a cluster and 

fixed-point shift to measure the magnitude and 

patterning of the coordination that occurred between the 

limbs interested in two major points. First, we 

determined (i) whether the cluster phase method could 

effectively measure elementary synchrony and identify 

important characteristics. Second, we concluded that (ii) 

the detection phase could effectively determine whether 

the different anatomical synchronized movements 

would be the best for the internal source (elementary 

biological characteristic) by the fixed-point shift 

process. 

To achieve this, each participant was seated with their 

arms on armrests and with a pendulum in each hand, 

held firmly to prohibit within-grasp motions. The gaze 

was elevated to prevent viewing of the pendulum 

oscillations that arose from the motions. After 

determining a more stable internal source (Experiment 

1; homogeneous characteristic from heterogeneous 

pool) applied to the cluster phase methods, we 

determined which can be the most prototypical 

dependent variable (Experiment 2; prototype modeling 

for the contexttual constraints invetigation). Then, we 

focused on the detected in-phase bimanual coordination 

that may need to be analyzed in different joint 

conditions (Koeneke et al., 2004; Wolf et al., 2020) 

investigating the synchronization that can occur between 

topologies in the limbs. Although there are important 

theoretical reasons why measuring synchrony at a 

different topological level may be essential (topological 

level of synchrony may be an important behavioral 

indicator for existence as an entity; Campbell, 1958), 

most of the observations have been made with 

neuromuscular constraints (Fink et al., 2000) and 

cognitive influence (i.e., visual and auditory event; 

Spencer & Ivry, 2007). 

The analysis of experiment 1 revealed that in-phase 
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coordination was more stable because it was relatively 

more associated with a preference for homologous 

activations underlying the cluster phase and amplitude 

calculation. The analysis of experiment 2 demonstrated 

that data from only one joint in many trials cannot be 

represented as the well-defined characteristic of a 

system. Instead, collecting different values for various 

joints but using only one (i.e., wrist) for a biological 

characterization appears more reliable as a typical 

dependent variable, including the trial effect. 

Observation derived from the analysis of both profiles 

might reveal the applicability of measuring the type of 

phase and topology stability, fulfilling the requirements 

of a typically well-defined system characteristic as well 

as eliminating the learning effect stemming from 

numerous trials. 

Practical Implications

The results revealed that the cluster phase and 

amplitude measures of the relative phases can be used 

to identify synchrony patterning. The methods applied in 

the experiments demonstrated that wrist in-phase motion 

was suggested as a reliable order parameter with a value 

of amplitude and the trail effect compared with other 

stable relative-phase patterns (three joints). At present, the 

observation across constraints is diverse, but consistencies 

occur in the suppression of the wrist joint and the 

attraction to stable phasing patterns (Stergiou, 2020). The 

dynamics of the performance are reasonable, even though 

conditional differences can be presented. Many reasons 

may evolve for such a condition namely, constraint, level, 

ability, and experience in specific tasks (Kelso et al., 

2018). This study, at least, was designed to address such 

details, mainly for investigating the reliability in the order 

coordination parameter dynamics (Warren & Whang, 

1987). In addition, although the cluster and fixed-point 

shift method presented here cannot account for coupling 

delays or leading/following/detuning, it is plausible to 

assume that the method can be generalized to take such 

effects into account.

Regarding the practical implications, the present 

study has several insights that can be applied in future 

studies to strengthen the applicability of the present 

findings. First, the present study is based on data 

collected from a time dependent dynamic (expectation 

value based cluster statistics), which boosts the 

generalizability of the study findings to different 

synchrony (intra and interpersonal synchrony; Loras et 

al., 2019). For instance, the moderating effect of cluster 

amplitude may be more marked at transportation 

stochastic effects, where the impact of the time series 

on the performance relationship is much stronger for 

participants, as their functional flexibility is essential 

to maintain biological stability (Kaur et al., 2018). Thus, 

the findings of the present study can be replicated across 

different conditional effects to ensure their 

generalizability.

Further, instead of behavioral performance-based 

measurements from participants, objective outcome 

variables related to stability, such as neural/chemical 

functions and microstate severity, can be used as 

important variables in an examination of the variant and 

invariant effects (Klinshov et al., 2017). If similar 

findings are obtained with these objective 

neuro-chemical outcome variables, the practical 

importance of systematically managing biological 

adaptations can be further understood (Forestier & 

Nougier, 1998).

Finally, although the experimental group’s company 

was considered as an identical population with regard 

to studying at a university, other potential individual 

effects that were not seriously considered in this study 

may exist. The possibility must be left open that there 

may be important boundary conditions for the 

moderation of individual effects of biological stability 

on the relationships between external levels and internal 

behaviors (Vieluf et al., 2015). For instance, working 

hours and habit (i.e., how long participants worked and 

rested before participating in the experiment) could 

possibly interfere with biological performance by 

themselves or in conjunction with the experimental 
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setting. The uniqueness of the moderating effect of 

individual tendency variability can be confirmed by 

examining the effects of potentially confounding 

variables. 

Researchers may have some concerns regarding 

whether the tools are constrained to situations in which 

the points are measured during rocking. The analyses 

presented here all involve periodic coordination, and it 

is important to note that the techniques and results could 

be extended to situations where the movements involve 

natural coordination. The benefits of investigating these 

levels of synchrony, i.e., different anatomical position, 

are that they allow us to empirically test the extent with 

which the synchrony is a process that emerges because 

of relatively stable prototypes. Accordingly, this 

suggestion could be used in future research to determine 

whether and how the magnitude and stability of 

synchrony influences the coordination dynamics of 

movements (Richardson et al., 2010).
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Appendix

Appendix 2. Programming Procedures (Experiment 1)

Note we proceeded as follows: Load G1phasedataA into programing platform and store the scores into the 

variable (vector) d [i.e., use d=load (…);] The angular data are given in degrees and we need them in rad. 

Therefore, we put d=d/360*(2*pi); for each score X(k) in d, we want to know the sine function of that 

score, that is, cos (X (X(k)). Therefore, we compute a vector cosvec=cos(d); We have a look at the first 10 

function values using cosvec (1:10);. The parameter a is the average of all function values stored in the 

vector. Therefore, we put a=mean(cosvec). Then, we compute the parameter b in the same way. Using a 

single step, we put b=mean(sin(d)). Finally, we compute r using r=sqrt(a*a+b*b) and the cluster phase 

using the atan2 function of Programing like theta=atan2(b, a)/pi*180; Write down r and theta. The 

procedure was repeated with the data set G1phasedataB.txt. 

Appendix 3. Statistical Procedures (Experiment 2)

We initially calculated the correlation considering the interaction between both values and found that both 

conditions had a significant relationship [ϕ  ϕ] and [ϕ]. This indicates that although the 

Experimental setting

vs.

Experiment 1

vs.

Experiment 2

Left = general experimental setting with apparatus, Upper Right = experiment 1 (different phase conditions), Bottom Right 
= experiment 2 (different joint conditions). The red marks in experiment 2 denote the pendulum points.

Appendix 1. Schematic drawing of the experimental setting and conditions
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autocorrelation functions were different according to the time series between [ϕ  ϕ], 

[ϕ  ϕ], and [ϕ], the higher [ϕ  ϕ] was correlated with higher [ϕ] 

and lower [ϕ  ϕ] with lower [ϕ]: [Wrist Pearson Correlation R = .46 (p = 0.0011)], 

[Topology Pearson Correlation R = .5 (p = 0.00041)]. Such characteristics correspond to our predicted 

illustration of the relative phase based on the coordination dynamic calculations: ϕ  ϕ = fixed point 

shift, ϕ = variability as a function of frequency competition.


